These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 16474870)

  • 1. Evaluation of the field-adapted ADMA approach: absolute and relative energies of crambin and derivatives.
    Exner TE; Mezey PG
    Phys Chem Chem Phys; 2005 Dec; 7(24):4061-9. PubMed ID: 16474870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio quality properties for macromolecules using the ADMA approach.
    Exner TE; Mezey PG
    J Comput Chem; 2003 Dec; 24(16):1980-6. PubMed ID: 14531052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins. 2. Level of Theory, Basis Set, and Solvents Model Dependence.
    Frank A; Möller HM; Exner TE
    J Chem Theory Comput; 2012 Apr; 8(4):1480-92. PubMed ID: 26596758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fragment energy assembler method for Hartree-Fock calculations of large molecules.
    Li W; Fang T; Li S
    J Chem Phys; 2006 Apr; 124(15):154102. PubMed ID: 16674213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alternative to the "Star Path" enhancement of the ADMA linear scaling method for protein modeling.
    Mezey PG; Antal Z
    J Comput Chem; 2017 Jul; 38(20):1774-1779. PubMed ID: 28488288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules.
    Li S; Li W; Fang T
    J Am Chem Soc; 2005 May; 127(19):7215-26. PubMed ID: 15884963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The successful merger of theoretical thermochemistry with fragment-based methods in quantum chemistry.
    Ramabhadran RO; Raghavachari K
    Acc Chem Res; 2014 Dec; 47(12):3596-604. PubMed ID: 25393551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.
    Li W; Li S; Jiang Y
    J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.
    Yuan Y; Mills MJ; Popelier PL
    J Comput Chem; 2014 Feb; 35(5):343-59. PubMed ID: 24449043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins.
    Frank A; Onila I; Möller HM; Exner TE
    Proteins; 2011 Jul; 79(7):2189-202. PubMed ID: 21557322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules.
    Hua S; Hua W; Li S
    J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost.
    Schwabe T; Grimme S
    Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generalized higher order kernel energy approximation method.
    Weiss SN; Huang L; Massa L
    J Comput Chem; 2010 Dec; 31(16):2889-99. PubMed ID: 20564332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape-activity relations.
    Mezey PG
    Acc Chem Res; 2014 Sep; 47(9):2821-7. PubMed ID: 25019572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrected small basis set Hartree-Fock method for large systems.
    Sure R; Grimme S
    J Comput Chem; 2013 Jul; 34(19):1672-85. PubMed ID: 23670872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.
    Kruse H; Grimme S
    J Chem Phys; 2012 Apr; 136(15):154101. PubMed ID: 22519309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate theoretical chemistry with coupled pair models.
    Neese F; Hansen A; Wennmohs F; Grimme S
    Acc Chem Res; 2009 May; 42(5):641-8. PubMed ID: 19296607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic second derivatives of the energy in the fragment molecular orbital method.
    Nakata H; Nagata T; Fedorov DG; Yokojima S; Kitaura K; Nakamura S
    J Chem Phys; 2013 Apr; 138(16):164103. PubMed ID: 23635107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.