These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 164749)

  • 41. A few remarks on the preparation of tetanus toxin and toxoid on casein hydrolysate medium.
    Lettl A; Nekvasilová K; Moravec K; Stejskal A; Petera A
    J Hyg Epidemiol Microbiol Immunol; 1968; 12(3):324-34. PubMed ID: 4891178
    [No Abstract]   [Full Text] [Related]  

  • 42. Spore germination and vegetative growth of Clostridium botulinum type E in synthetic media.
    Ward BQ; Carroll BJ
    Can J Microbiol; 1966 Dec; 12(6):1145-56. PubMed ID: 5336410
    [No Abstract]   [Full Text] [Related]  

  • 43. Growth and toxin formation by Clostridium botulinum at low pH values.
    Smelt JP; Raatjes GJ; Crowther JS; Verrips CT
    J Appl Bacteriol; 1982 Feb; 52(1):75-82. PubMed ID: 7040328
    [No Abstract]   [Full Text] [Related]  

  • 44. Clostridium tetani growth and toxin production in the intestines of germfree rats.
    Wells CL; Balish E
    Infect Immun; 1983 Aug; 41(2):826-8. PubMed ID: 6347898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effective levels of tetanus toxin can be made in a production medium totally lacking both animal (e.g., brain heart infusion) and dairy proteins or digests (e.g., casein hydrolysates).
    Demain AL; Gerson DF; Fang A
    Vaccine; 2005 Nov; 23(46-47):5420-3. PubMed ID: 16122852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study of the nutritional requirements and toxin production of Clostridium botulinum type F.
    Holdeman LV; Smith LD
    Can J Microbiol; 1965 Dec; 11(6):1009-19. PubMed ID: 5326029
    [No Abstract]   [Full Text] [Related]  

  • 47. Effect of peptidic groups isolated from enzymic casein hydrolysate on growth and toxinogenesis of Clostridium welchii (perfringens).
    Nekvasilová K; Sídlo J; Háza J
    J Gen Microbiol; 1970 Jul; 62(1):3-16. PubMed ID: 4321096
    [No Abstract]   [Full Text] [Related]  

  • 48. Effects of toxins of Clostridium botulinum and Clostridium tetani on acetylcholine synthesis.
    TORDA C; WOLFF HG
    Fed Proc; 1947; 6(1):377. PubMed ID: 20343791
    [No Abstract]   [Full Text] [Related]  

  • 49. [Nitrogenous components of the nutrient medium in culturing Clostridium perfringens type D].
    Zhuravel' ESh
    Veterinariia; 1968 Jun; 45(6):25-6. PubMed ID: 4310429
    [No Abstract]   [Full Text] [Related]  

  • 50. Clostridium botulinum can grow and form toxin at pH values lower than 4.6.
    Raatjes GJ; Smelt JP
    Nature; 1979 Oct; 281(5730):398-9. PubMed ID: 39257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aerobic growth and toxigenicity of Clostridium botulinum types A and B.
    Dezfulian M
    Folia Microbiol (Praha); 1999; 44(2):167-70. PubMed ID: 10588051
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Growth and toxin production of Clostridium botulinum types E, nonproteolytic B, and F in nonirradiated and irradiated fisheries products in the temperature range of 38 degrees to 50 degrees F. TID-24882.
    Eklund MW; Poysky FT
    TID Rep; 1966 Jan; ():1-70. PubMed ID: 4905222
    [No Abstract]   [Full Text] [Related]  

  • 53. Common mesophilic anaerobes, including Clostridium botulinum and Clostridium tetani, in 21 soil specimens.
    Smith LD
    Appl Microbiol; 1975 May; 29(5):590-4. PubMed ID: 238468
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Ultrastructure of Clostridium botulinum type E during the process of toxin formation].
    Lysenko AI; Cherniavskiĭ VI; Kulakova GS; Iskritskiĭ GV
    Mikrobiol Zh; 1973; 35(3):308-12. PubMed ID: 4598684
    [No Abstract]   [Full Text] [Related]  

  • 55. [Toxin production by Cl. perfringens of types A and D on synthetic media].
    Bychenko BD; Ivanova LG
    Zh Mikrobiol Epidemiol Immunobiol; 1968 Jan; 45(1):84-9. PubMed ID: 4298565
    [No Abstract]   [Full Text] [Related]  

  • 56. Genomic insights into the evolution and ecology of botulinum neurotoxins.
    Mansfield MJ; Doxey AC
    Pathog Dis; 2018 Jun; 76(4):. PubMed ID: 29684130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Dynamics of changes in the oxidation-reduction potential (rH2) and morphology of Cl. perfringens cultures in the course of toxin formation on semisynthetic culture medium].
    Samsonova VS; Volkova ZM; Shamraeva SA; Tsurikov FF; Solov'ev NN
    Zh Mikrobiol Epidemiol Immunobiol; 1965 Apr; 42(4):137-41. PubMed ID: 4287673
    [No Abstract]   [Full Text] [Related]  

  • 58. [STUDIES USING NON MYELINATED NERVE FIBERS ON THE SITE OF THE EFFECT OF BOTULINUM AND TETANUS TOXIN].
    WESTHUES M
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1964 Jan; 246():308-15. PubMed ID: 14137056
    [No Abstract]   [Full Text] [Related]  

  • 59. Bacteriology and management of necrotizing soft tissue infections.
    Abbott IJ; Spelman D
    J Emerg Med; 2009 Nov; 37(4):420-1; author reply 421-2. PubMed ID: 19500932
    [No Abstract]   [Full Text] [Related]  

  • 60. Symposium on microbial changes in foods. Factors affecting the production of bacterial food poisoning toxins.
    Baird-Parker AC
    J Appl Bacteriol; 1971 Mar; 34(1):181-97. PubMed ID: 4327570
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.