These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 16475012)
1. Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus x domestica). Malnoy M; Reynoird JP; Borejsza-Wysocka EE; Aldwinckle HS Transgenic Res; 2006 Feb; 15(1):83-93. PubMed ID: 16475012 [TBL] [Abstract][Full Text] [Related]
2. Engineering fire blight resistance into the apple cultivar 'Gala' using the FB_MR5 CC-NBS-LRR resistance gene of Malus × robusta 5. Broggini GA; Wöhner T; Fahrentrapp J; Kost TD; Flachowsky H; Peil A; Hanke MV; Richter K; Patocchi A; Gessler C Plant Biotechnol J; 2014 Aug; 12(6):728-33. PubMed ID: 24618178 [TBL] [Abstract][Full Text] [Related]
3. Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Malnoy M; Venisse JS; Reynoird JP; Chevreau E Planta; 2003 Mar; 216(5):802-14. PubMed ID: 12624768 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus x domestica. Malnoy M; Jin Q; Borejsza-Wysocka EE; He SY; Aldwinckle HS Mol Plant Microbe Interact; 2007 Dec; 20(12):1568-80. PubMed ID: 17990964 [TBL] [Abstract][Full Text] [Related]
5. Recombinant DNA technology in apple. Gessler C; Patocchi A Adv Biochem Eng Biotechnol; 2007; 107():113-32. PubMed ID: 17522823 [TBL] [Abstract][Full Text] [Related]
6. Cisgenic Rvi6 scab-resistant apple lines show no differences in Rvi6 transcription when compared with conventionally bred cultivars. Chizzali C; Gusberti M; Schouten HJ; Gessler C; Broggini GA Planta; 2016 Mar; 243(3):635-44. PubMed ID: 26586177 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptome analysis of a lowly virulent strain of Erwinia amylovora in shoots of two apple cultivars - susceptible and resistant to fire blight. Puławska J; Kałużna M; Warabieda W; Mikiciński A BMC Genomics; 2017 Nov; 18(1):868. PubMed ID: 29132313 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of CPKs and cytosolic Ca2+ variation in resistant and susceptible apple cultivars (Malus x domestica) in response to the pathogen Erwinia amylovora and mechanical wounding. Kanchiswamy CN; Mohanta TK; Capuzzo A; Occhipinti A; Verrillo F; Maffei ME; Malnoy M BMC Genomics; 2013 Nov; 14():760. PubMed ID: 24192013 [TBL] [Abstract][Full Text] [Related]
9. Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus x domestica) with Erwinia amylovora. Baldo A; Norelli JL; Farrell RE; Bassett CL; Aldwinckle HS; Malnoy M BMC Plant Biol; 2010 Jan; 10():1. PubMed ID: 20047654 [TBL] [Abstract][Full Text] [Related]
10. Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. Hutabarat OS; Flachowsky H; Regos I; Miosic S; Kaufmann C; Faramarzi S; Alam MZ; Gosch C; Peil A; Richter K; Hanke MV; Treutter D; Stich K; Halbwirth H Planta; 2016 May; 243(5):1213-24. PubMed ID: 26895335 [TBL] [Abstract][Full Text] [Related]
11. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora. Cellini A; Buriani G; Rocchi L; Rondelli E; Savioli S; Rodriguez Estrada MT; Cristescu SM; Costa G; Spinelli F Mol Plant Pathol; 2018 Jan; 19(1):158-168. PubMed ID: 27862864 [TBL] [Abstract][Full Text] [Related]
12. T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora. Dugé De Bernonville T; Gaucher M; Flors V; Gaillard S; Paulin JP; Dat JF; Brisset MN Plant Sci; 2012 Jun; 188-189():1-9. PubMed ID: 22525238 [TBL] [Abstract][Full Text] [Related]
13. Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Pontais I; Treutter D; Paulin JP; Brisset MN Physiol Plant; 2008 Mar; 132(3):262-71. PubMed ID: 18275458 [TBL] [Abstract][Full Text] [Related]
14. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. Pompili V; Dalla Costa L; Piazza S; Pindo M; Malnoy M Plant Biotechnol J; 2020 Mar; 18(3):845-858. PubMed ID: 31495052 [TBL] [Abstract][Full Text] [Related]
15. Identification of functional apple scab resistance gene promoters. Silfverberg-Dilworth E; Besse S; Paris R; Belfanti E; Tartarini S; Sansavini S; Patocchi A; Gessler C Theor Appl Genet; 2005 Apr; 110(6):1119-26. PubMed ID: 15726316 [TBL] [Abstract][Full Text] [Related]
16. Nectar- and stigma exudate-specific expression of an acidic chitinase could partially protect certain apple cultivars against fire blight disease. Kurilla A; Toth T; Dorgai L; Darula Z; Lakatos T; Silhavy D; Kerenyi Z; Dallmann G Planta; 2019 Nov; 251(1):20. PubMed ID: 31781986 [TBL] [Abstract][Full Text] [Related]
17. Phylogenetic analysis of PR genes in some pome fruit species with the emphasis on transcriptional analysis and ROS response under Erwinia amylovora inoculation in apple. Hassani M; Salami SA; Nasiri J; Abdollahi H; Ghahremani Z Genetica; 2016 Feb; 144(1):9-22. PubMed ID: 26589211 [TBL] [Abstract][Full Text] [Related]