BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16475314)

  • 1. XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant.
    Cancès B; Juillot F; Morin G; Laperche V; Alvarez L; Proux O; Hazemann JL; Brown GE; Calas G
    Environ Sci Technol; 2005 Dec; 39(24):9398-405. PubMed ID: 16475314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in arsenic speciation through a contaminated soil profile: a XAS based study.
    Cancès B; Juillot F; Morin G; Laperche V; Polya D; Vaughan DJ; Hazemann JL; Proux O; Brown GE; Calas G
    Sci Total Environ; 2008 Jul; 397(1-3):178-89. PubMed ID: 18406447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal variability of arsenic solid-state speciation in historically lead arsenate contaminated soils.
    Arai Y; Lanzirotti A; Sutton SR; Newville M; Dyer J; Sparks DL
    Environ Sci Technol; 2006 Feb; 40(3):673-9. PubMed ID: 16509302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.
    Fan JX; Wang YJ; Liu C; Wang LH; Yang K; Zhou DM; Li W; Sparks DL
    J Hazard Mater; 2014 Aug; 279():212-9. PubMed ID: 25064258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils.
    Lee JC; Kim EJ; Baek K
    Chemosphere; 2017 Feb; 168():1439-1446. PubMed ID: 27923505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of As speciation with depth in a soil profile with a geothermal As origin.
    Yang PT; Wu WJ; Hashimoto Y; Huang JH; Huang ST; Hseu ZY; Wang SL
    Chemosphere; 2020 Feb; 241():124956. PubMed ID: 31605996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.
    Kim EJ; Yoo JC; Baek K
    Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong.
    Cui JL; Zhao YP; Li JS; Beiyuan JZ; Tsang DCW; Poon CS; Chan TS; Wang WX; Li XD
    Environ Pollut; 2018 Jan; 232():375-384. PubMed ID: 28966030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy.
    Niazi NK; Singh B; Shah P
    Environ Sci Technol; 2011 Sep; 45(17):7135-42. PubMed ID: 21797214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the As(III)/As(V) ratio in soil by X-ray absorption near-edge structure (XANES) and its application to the arsenic distribution between soil and water.
    Takahashi Y; Ohtaku N; Mitsunobu S; Yuita K; Nomura M
    Anal Sci; 2003 Jun; 19(6):891-6. PubMed ID: 12834230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents.
    Kim EJ; Lee JC; Baek K
    J Hazard Mater; 2015; 283():454-61. PubMed ID: 25464283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fate and bioavailability of arsenic in organo-arsenical pesticide-applied soils. Part-I: incubation study.
    Sarkar D; Datta R; Sharma S
    Chemosphere; 2005 Jul; 60(2):188-95. PubMed ID: 15914238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii.
    Cutler WG; Brewer RC; El-Kadi A; Hue NV; Niemeyer PG; Peard J; Ray C
    Sci Total Environ; 2013 Jan; 442():177-88. PubMed ID: 23178778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.
    Voegelin A; Pfenninger N; Petrikis J; Majzlan J; Plötze M; Senn AC; Mangold S; Steininger R; Göttlicher J
    Environ Sci Technol; 2015 May; 49(9):5390-8. PubMed ID: 25885948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate.
    Kim EJ; Baek K
    J Hazard Mater; 2015 Mar; 284():19-26. PubMed ID: 25463213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenate adsorption structures on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils.
    Beaulieu BT; Savage KS
    Environ Sci Technol; 2005 May; 39(10):3571-9. PubMed ID: 15952360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interdisciplinary physical-chemical approach for characterization of arsenic in a calciner residue dump in Cornwall (UK).
    van Elteren JT; Slejkovec Z; Arcon I; Glass HJ
    Environ Pollut; 2006 Feb; 139(3):477-88. PubMed ID: 16102880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.