BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16475334)

  • 1. Photoirradiation of dissolved humic acid induces arsenic(III) oxidation.
    Buschmann J; Canonica S; Lindauer U; Hug SJ; Sigg L
    Environ Sci Technol; 2005 Dec; 39(24):9541-6. PubMed ID: 16475334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinduced oxidation of antimony(III) in the presence of humic acid.
    Buschmann J; Canonica S; Sigg L
    Environ Sci Technol; 2005 Jul; 39(14):5335-41. PubMed ID: 16082964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers.
    Mladenov N; Zheng Y; Miller MP; Nemergut DR; Legg T; Simone B; Hageman C; Rahman MM; Ahmed KM; McKnight DM
    Environ Sci Technol; 2010 Jan; 44(1):123-8. PubMed ID: 20039742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum.
    Buschmann J; Kappeler A; Lindauer U; Kistler D; Berg M; Sigg L
    Environ Sci Technol; 2006 Oct; 40(19):6015-20. PubMed ID: 17051793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced transformation of aquatic organic compounds by long-lived photooxidants (LLPO) produced from dissolved organic matter.
    Remke SC; von Gunten U; Canonica S
    Water Res; 2021 Feb; 190():116707. PubMed ID: 33373945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron.
    Gaberell M; Chin YP; Hug SJ; Sulzberger B
    Environ Sci Technol; 2003 Oct; 37(19):4403-9. PubMed ID: 14572092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolved black carbon mediated photo-oxidation of arsenic(III) to arsenic(V) in water: The key role of triplet states.
    Zhou Z; Yang L; Qu X; Fu H
    Chemosphere; 2024 Jan; 347():140718. PubMed ID: 37972870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical oxidation of As(III) by vacuum-UV lamp irradiation.
    Yoon SH; Lee JH; Oh S; Yang JE
    Water Res; 2008 Jul; 42(13):3455-63. PubMed ID: 18514252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of arsenic species with tropical river aquatic humic substances enriched with aluminum and iron.
    de Oliveira LK; Melo Cde A; Fraceto LF; Friese K; Rosa AH
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6205-16. PubMed ID: 26606934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical.
    Wenk J; von Gunten U; Canonica S
    Environ Sci Technol; 2011 Feb; 45(4):1334-40. PubMed ID: 21271693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosensitized degradation of 2,4',5-trichlorobiphenyl (PCB 31) by dissolved organic matter.
    Chen L; Tang X; Shen C; Chen C; Chen Y
    J Hazard Mater; 2012 Jan; 201-202():1-6. PubMed ID: 22169245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Model Study of the Photochemical Fate of As(III) in Paddy-Water.
    Carena L; Vione D
    Molecules; 2017 Mar; 22(3):. PubMed ID: 28287457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation.
    Lee Y; Um IH; Yoon J
    Environ Sci Technol; 2003 Dec; 37(24):5750-6. PubMed ID: 14717190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process.
    Xie X; Hu Y; Cheng H
    Water Res; 2016 Feb; 89():59-67. PubMed ID: 26638133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of elevated sulfate concentration on the mobility of arsenic in the sediment-water interface.
    Li S; Yang C; Peng C; Li H; Liu B; Chen C; Chen B; Bai J; Lin C
    Ecotoxicol Environ Saf; 2018 Jun; 154():311-320. PubMed ID: 29482126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissolved Organic Matter Affects Arsenic Mobility and Iron(III) (hydr)oxide Formation: Implications for Managed Aquifer Recharge.
    Wu X; Bowers B; Kim D; Lee B; Jun YS
    Environ Sci Technol; 2019 Dec; 53(24):14357-14367. PubMed ID: 31640342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters.
    Hug SJ; Canonica L; Wegelin M; Gechter D; Von Gunten U
    Environ Sci Technol; 2001 May; 35(10):2114-21. PubMed ID: 11393995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.