BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16475753)

  • 1. Target volume dose considerations in proton beam treatment planning for lung tumors.
    Engelsman M; Kooy HM
    Med Phys; 2005 Dec; 32(12):3549-57. PubMed ID: 16475753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of breathing and set-up errors on the cumulative dose to a lung tumor.
    Engelsman M; Damen EM; De Jaeger K; van Ingen KM; Mijnheer BJ
    Radiother Oncol; 2001 Jul; 60(1):95-105. PubMed ID: 11410310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The theoretical benefit of beam fringe compensation and field size reduction for iso-normal tissue complication probability dose escalation in radiotherapy of lung cancer.
    Engelsman M; Remeijer P; van Herk M; Mijnheer B; Damen E
    Med Phys; 2003 Jun; 30(6):1086-95. PubMed ID: 12852532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field size reduction enables iso-NTCP escalation of tumor control probability for irradiation of lung tumors.
    Engelsman M; Remeijer P; van Herk M; Lebesque JV; Mijnheer BJ; Damen EM
    Int J Radiat Oncol Biol Phys; 2001 Dec; 51(5):1290-8. PubMed ID: 11728689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dosimetric impact of intrafraction motion for compensator-based proton therapy of lung cancer.
    Zhao L; Sandison GA; Farr JB; Hsi WC; Li XA
    Phys Med Biol; 2008 Jun; 53(12):3343-64. PubMed ID: 18523345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: evaluation of the impact on daily dose coverage.
    Wang L; Hayes S; Paskalev K; Jin L; Buyyounouski MK; Ma CC; Feigenberg S
    Radiother Oncol; 2009 Jun; 91(3):314-24. PubMed ID: 19111362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose calculations accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume.
    Admiraal MA; Schuring D; Hurkmans CW
    Radiother Oncol; 2008 Jan; 86(1):55-60. PubMed ID: 18082905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilize target motion to cover clinical target volume (ctv)--a novel and practical treatment planning approach to manage respiratory motion.
    Jin JY; Ajlouni M; Kong FM; Ryu S; Chetty IJ; Movsas B
    Radiother Oncol; 2008 Dec; 89(3):292-303. PubMed ID: 18701181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.
    Sloth Møller D; Knap MM; Nyeng TB; Khalil AA; Holt MI; Kandi M; Hoffmann L
    Acta Oncol; 2017 Nov; 56(11):1604-1609. PubMed ID: 28885090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EUD-based margin selection in the presence of set-up uncertainties.
    Song W; Dunscombe P
    Med Phys; 2004 Apr; 31(4):849-59. PubMed ID: 15125003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-dimensional proton treatment planning for lung tumors.
    Engelsman M; Rietzel E; Kooy HM
    Int J Radiat Oncol Biol Phys; 2006 Apr; 64(5):1589-95. PubMed ID: 16580508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetric effect of respiratory motion in external beam radiotherapy of the lung.
    Mechalakos J; Yorke E; Mageras GS; Hertanto A; Jackson A; Obcemea C; Rosenzweig K; Clifton Ling C
    Radiother Oncol; 2004 May; 71(2):191-200. PubMed ID: 15110453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of calculating a lung clinical target volume DVH for IMRT with intrafractional motion.
    Kung JH; Zygmanski P; Choi N; Chen GT
    Med Phys; 2003 Jun; 30(6):1103-9. PubMed ID: 12852534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotoxic dose escalation in the treatment of lung cancer by means of heterogeneous dose distributions in the presence of respiratory motion.
    Baker M; Nielsen M; Hansen O; Jahn JW; Korreman S; Brink C
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(3):849-55. PubMed ID: 21570211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations.
    Flampouri S; Jiang SB; Sharp GC; Wolfgang J; Patel AA; Choi NC
    Phys Med Biol; 2006 Jun; 51(11):2763-79. PubMed ID: 16723765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors.
    Gordon JJ; Siebers JV
    Phys Med Biol; 2007 Apr; 52(7):1967-90. PubMed ID: 17374922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4D Proton treatment planning strategy for mobile lung tumors.
    Kang Y; Zhang X; Chang JY; Wang H; Wei X; Liao Z; Komaki R; Cox JD; Balter PA; Liu H; Zhu XR; Mohan R; Dong L
    Int J Radiat Oncol Biol Phys; 2007 Mar; 67(3):906-14. PubMed ID: 17293240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung sparing and dose escalation in a robust-inspired IMRT planning method for lung radiotherapy that accounts for intrafraction motion.
    McCann C; Purdie T; Hope A; Bezjak A; Bissonnette JP
    Med Phys; 2013 Jun; 40(6):061705. PubMed ID: 23718584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of target coverage and margins adequacy during CyberKnife Lung Optimized Treatment.
    Ricotti R; Seregni M; Ciardo D; Vigorito S; Rondi E; Piperno G; Ferrari A; Zerella MA; Arculeo S; Francia CM; Sibio D; Cattani F; De Marinis F; Spaggiari L; Orecchia R; Riboldi M; Baroni G; Jereczek-Fossa BA
    Med Phys; 2018 Apr; 45(4):1360-1368. PubMed ID: 29431863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of using different four-dimensional computed tomography data sets to design proton treatment plans for distal esophageal cancer.
    Pan X; Zhang X; Li Y; Mohan R; Liao Z
    Int J Radiat Oncol Biol Phys; 2009 Feb; 73(2):601-9. PubMed ID: 19147024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.