These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A common catalytic mechanism for proteins of the HutI family. Tyagi R; Eswaramoorthy S; Burley SK; Raushel FM; Swaminathan S Biochemistry; 2008 May; 47(20):5608-15. PubMed ID: 18442260 [TBL] [Abstract][Full Text] [Related]
5. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Mandrich L; Manco G Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of two diverse enzymes in the amidinotransferase superfamily by 2-chloroacetamidine: dimethylargininase and peptidylarginine deiminase. Stone EM; Schaller TH; Bianchi H; Person MD; Fast W Biochemistry; 2005 Oct; 44(42):13744-52. PubMed ID: 16229464 [TBL] [Abstract][Full Text] [Related]
7. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Roodveldt C; Tawfik DS Biochemistry; 2005 Sep; 44(38):12728-36. PubMed ID: 16171387 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of enzymes involved in the degradation of chemotactic N-formyl peptides. Nguyen KT; Pei D Biochemistry; 2005 Jun; 44(23):8514-22. PubMed ID: 15938642 [TBL] [Abstract][Full Text] [Related]
9. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study. Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187 [TBL] [Abstract][Full Text] [Related]
10. Regulation of carbon and nitrogen utilization by CbrAB and NtrBC two-component systems in Pseudomonas aeruginosa. Li W; Lu CD J Bacteriol; 2007 Aug; 189(15):5413-20. PubMed ID: 17545289 [TBL] [Abstract][Full Text] [Related]
11. l-Methionine sulfoximine, but not phosphinothricin, is a substrate for an acetyltransferase (gene PA4866) from Pseudomonas aeruginosa: structural and functional studies. Davies AM; Tata R; Beavil RL; Sutton BJ; Brown PR Biochemistry; 2007 Feb; 46(7):1829-39. PubMed ID: 17253769 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of microbial arginine deiminases by L-canavanine. Li L; Li Z; Chen D; Lu X; Feng X; Wright EC; Solberg NO; Dunaway-Mariano D; Mariano PS; Galkin A; Kulakova L; Herzberg O; Green-Church KB; Zhang L J Am Chem Soc; 2008 Feb; 130(6):1918-31. PubMed ID: 18205354 [TBL] [Abstract][Full Text] [Related]
13. Evolution of enzymatic activities in the enolase superfamily: N-succinylamino acid racemase and a new pathway for the irreversible conversion of D- to L-amino acids. Sakai A; Xiang DF; Xu C; Song L; Yew WS; Raushel FM; Gerlt JA Biochemistry; 2006 Apr; 45(14):4455-62. PubMed ID: 16584181 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis studies of acetylglutamate synthase delineate the site for the arginine inhibitor. Sancho-Vaello E; Fernández-Murga ML; Rubio V FEBS Lett; 2008 Apr; 582(7):1081-6. PubMed ID: 18319063 [TBL] [Abstract][Full Text] [Related]
15. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
16. Structural studies on the Pseudomonas aeruginosa sialidase-like enzyme PA2794 suggest substrate and mechanistic variations. Xu G; Ryan C; Kiefel MJ; Wilson JC; Taylor GL J Mol Biol; 2009 Feb; 386(3):828-40. PubMed ID: 19166860 [TBL] [Abstract][Full Text] [Related]
17. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
18. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases. Nakagawa Y; Hasegawa A; Hiratake J; Sakata K Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559 [TBL] [Abstract][Full Text] [Related]
19. Structure and function of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member. Narayanan B; Niu W; Joosten HJ; Li Z; Kuipers RK; Schaap PJ; Dunaway-Mariano D; Herzberg O J Mol Biol; 2009 Feb; 386(2):486-503. PubMed ID: 19133276 [TBL] [Abstract][Full Text] [Related]
20. Genetic and metabolic control of enzymes responsible for histidine degradation in Salmonella typhimurium. 4-imidazolone-5-propionate amidohydrolase and N-formimino-L-glutamate formiminohydrolase. Smith GR; Halpern YS; Magasanik B J Biol Chem; 1971 May; 246(10):3320-9. PubMed ID: 4930059 [No Abstract] [Full Text] [Related] [Next] [New Search]