BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16475812)

  • 1. Membrane binding of twin arginine preproteins as an early step in translocation.
    Shanmugham A; Wong Fong Sang HW; Bollen YJ; Lill H
    Biochemistry; 2006 Feb; 45(7):2243-9. PubMed ID: 16475812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. YidC-dependent translocation of green fluorescence protein fused to the FliP cleavable signal peptide.
    Pradel N; Decorps A; Ye C; Santini CL; Wu LF
    Biochimie; 2005 Feb; 87(2):191-6. PubMed ID: 15760712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coexpression of TorD enhances the transport of GFP via the TAT pathway.
    Li SY; Chang BY; Lin SC
    J Biotechnol; 2006 Apr; 122(4):412-21. PubMed ID: 16253369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery.
    Ignatova Z; Hörnle C; Nurk A; Kasche V
    Biochem Biophys Res Commun; 2002 Feb; 291(1):146-9. PubMed ID: 11829474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twin-arginine-dependent translocation of SufI in the absence of cytosolic helper proteins.
    Holzapfel E; Moser M; Schiltz E; Ueda T; Betton JM; Müller M
    Biochemistry; 2009 Jun; 48(23):5096-105. PubMed ID: 19432418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A twin-arginine translocation (Tat)-mediated phage display system.
    Paschke M; Höhne W
    Gene; 2005 Apr; 350(1):79-88. PubMed ID: 15794923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode of insertion of the signal sequence of a bacterial precursor protein into phospholipid bilayers as revealed by cysteine-based site-directed spectroscopy.
    Keller RC; ten Berge D; Nouwen N; Snel MM; Tommassen J; Marsh D; de Kruijff B
    Biochemistry; 1996 Mar; 35(9):3063-71. PubMed ID: 8608147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal peptide protection by specific chaperone.
    Genest O; Seduk F; Ilbert M; Méjean V; Iobbi-Nivol C
    Biochem Biophys Res Commun; 2006 Jan; 339(3):991-5. PubMed ID: 16337610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negatively charged phospholipids trigger the interaction of a bacterial Tat substrate precursor protein with lipid monolayers.
    Brehmer T; Kerth A; Graubner W; Malesevic M; Hou B; Brüser T; Blume A
    Langmuir; 2012 Feb; 28(7):3534-41. PubMed ID: 22263701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tat transport of linker-containing proteins in Escherichia coli.
    Lindenstrauss U; Brüser T
    FEMS Microbiol Lett; 2009 Jun; 295(1):135-40. PubMed ID: 19473260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The twin-arginine translocation system: a novel means of transporting folded proteins in chloroplasts and bacteria.
    Robinson C
    Biol Chem; 2000 Feb; 381(2):89-93. PubMed ID: 10746739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One signal is enough: Stepwise transport of two distinct passenger proteins by the Tat pathway across the thylakoid membrane.
    Fan E; Jakob M; Klösgen RB
    Biochem Biophys Res Commun; 2010 Jul; 398(3):438-43. PubMed ID: 20599707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A putative twin-arginine translocation pathway in Legionella pneumophila.
    De Buck E; Lebeau I; Maes L; Geukens N; Meyen E; Van Mellaert L; Anné J; Lammertyn E
    Biochem Biophys Res Commun; 2004 Apr; 317(2):654-61. PubMed ID: 15063808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential.
    Patel GJ; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Nov; 48(43):10235-45. PubMed ID: 19780589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein transport in Archaea: Sec and twin arginine translocation pathways.
    Pohlschröder M; Giménez MI; Jarrell KF
    Curr Opin Microbiol; 2005 Dec; 8(6):713-9. PubMed ID: 16257258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impairment of twin-arginine-dependent export by seemingly small alterations of substrate conformation.
    Maurer C; Panahandeh S; Moser M; Müller M
    FEBS Lett; 2009 Sep; 583(17):2849-53. PubMed ID: 19631648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase.
    Bachmann J; Bauer B; Zwicker K; Ludwig B; Anderka O
    FEBS J; 2006 Nov; 273(21):4817-30. PubMed ID: 16987314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of LolB function--lipoprotein binding, membrane targeting and incorporation of lipoproteins into lipid bilayers.
    Tsukahara J; Mukaiyama K; Okuda S; Narita S; Tokuda H
    FEBS J; 2009 Aug; 276(16):4496-504. PubMed ID: 19678842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro analysis of the bacterial twin-arginine-dependent protein export.
    Moser M; Panahandeh S; Holzapfel E; Müller M
    Methods Mol Biol; 2007; 390():63-79. PubMed ID: 17951681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twin-arginine-specific protein export in Escherichia coli.
    Müller M
    Res Microbiol; 2005 Mar; 156(2):131-6. PubMed ID: 15748976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.