BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16475814)

  • 1. Identification of an ordered compact structure within the recombinant bovine fibrinogen alphaC-domain fragment by NMR.
    Burton RA; Tsurupa G; Medved L; Tjandra N
    Biochemistry; 2006 Feb; 45(7):2257-66. PubMed ID: 16475814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment.
    Burton RA; Tsurupa G; Hantgan RR; Tjandra N; Medved L
    Biochemistry; 2007 Jul; 46(29):8550-60. PubMed ID: 17590019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do the isolated fibrinogen alphaC-domains form ordered oligomers?
    Tsurupa G; Veklich Y; Hantgan R; Belkin AM; Weisel JW; Medved L
    Biophys Chem; 2004 Dec; 112(2-3):257-66. PubMed ID: 15572257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of αC polymer formation in fibrin.
    Tsurupa G; Pechik I; Litvinov RI; Hantgan RR; Tjandra N; Weisel JW; Medved L
    Biochemistry; 2012 Mar; 51(12):2526-38. PubMed ID: 22397628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural organization of the fibrin(ogen) alpha C-domain.
    Tsurupa G; Tsonev L; Medved L
    Biochemistry; 2002 May; 41(20):6449-59. PubMed ID: 12009908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for specific interactions of the fibrinogen alphaC-domains with the central E region and with each other.
    Litvinov RI; Yakovlev S; Tsurupa G; Gorkun OV; Medved L; Weisel JW
    Biochemistry; 2007 Aug; 46(31):9133-42. PubMed ID: 17630702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, stability, and interaction of the fibrin(ogen) alphaC-domains.
    Tsurupa G; Hantgan RR; Burton RA; Pechik I; Tjandra N; Medved L
    Biochemistry; 2009 Dec; 48(51):12191-201. PubMed ID: 19928926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of fibrin(ogen) with fibronectin: further characterization and localization of the fibronectin-binding site.
    Makogonenko E; Tsurupa G; Ingham K; Medved L
    Biochemistry; 2002 Jun; 41(25):7907-13. PubMed ID: 12069579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, stability, and interaction of fibrin αC-domain polymers.
    Tsurupa G; Mahid A; Veklich Y; Weisel JW; Medved L
    Biochemistry; 2011 Sep; 50(37):8028-37. PubMed ID: 21806028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding.
    Griffiths-Jones SR; Maynard AJ; Searle MS
    J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein.
    Wang G; Wylie GP; Twigg PD; Caspar DL; Murphy JR; Logan TM
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6119-24. PubMed ID: 10339551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptococcus gordonii FSS2 Challisin affects fibrin clot formation by digestion of the αC region and cleavage of the N -terminal region of the Bβ chains of fibrinogen.
    Harty DW; Farahani RM; Simonian MR; Hunter L; Hunter N
    Thromb Haemost; 2012 Aug; 108(2):236-46. PubMed ID: 22552295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation-induced destabilization of the fibrinogen αC-domain dimer investigated by molecular dynamics simulations.
    Pederson EN; Interlandi G
    Proteins; 2019 Oct; 87(10):826-836. PubMed ID: 31134660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of side-chains in the cooperative beta-hairpin folding of the short C-terminal fragment derived from streptococcal protein G.
    Kobayashi N; Honda S; Yoshii H; Munekata E
    Biochemistry; 2000 May; 39(21):6564-71. PubMed ID: 10828973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR structures of 36 and 73-residue fragments of the calreticulin P-domain.
    Ellgaard L; Bettendorff P; Braun D; Herrmann T; Fiorito F; Jelesarov I; Güntert P; Helenius A; Wüthrich K
    J Mol Biol; 2002 Sep; 322(4):773-84. PubMed ID: 12270713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein.
    Cornilescu CC; Bouamr F; Yao X; Carter C; Tjandra N
    J Mol Biol; 2001 Mar; 306(4):783-97. PubMed ID: 11243788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure and backbone dynamics of the human alpha3-chain type VI collagen C-terminal Kunitz domain,
    Sorensen MD; Bjorn S; Norris K; Olsen O; Petersen L; James TL; Led JJ
    Biochemistry; 1997 Aug; 36(34):10439-50. PubMed ID: 9265624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrinogen.
    Yee VC; Pratt KP; Côté HC; Trong IL; Chung DW; Davie EW; Stenkamp RE; Teller DC
    Structure; 1997 Jan; 5(1):125-38. PubMed ID: 9016719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative assembly of a nativelike ubiquitin structure through peptide fragment complexation: energetics of peptide association and folding.
    Jourdan M; Searle MS
    Biochemistry; 2000 Oct; 39(40):12355-64. PubMed ID: 11015215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of A alpha 251 fibrinogen: the alpha C domain has a role in polymerization, albeit more subtle than anticipated from the analogous proteolytic fragment X.
    Gorkun OV; Henschen-Edman AH; Ping LF; Lord ST
    Biochemistry; 1998 Nov; 37(44):15434-41. PubMed ID: 9799505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.