BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16475834)

  • 1. Mechanistic studies of ubiquitin C-terminal hydrolase L1.
    Case A; Stein RL
    Biochemistry; 2006 Feb; 45(7):2443-52. PubMed ID: 16475834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes.
    Dang LC; Melandri FD; Stein RL
    Biochemistry; 1998 Feb; 37(7):1868-79. PubMed ID: 9485312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate.
    Misaghi S; Galardy PJ; Meester WJ; Ovaa H; Ploegh HL; Gaudet R
    J Biol Chem; 2005 Jan; 280(2):1512-20. PubMed ID: 15531586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains.
    Zhou ZR; Zhang YH; Liu S; Song AX; Hu HY
    Biochem J; 2012 Jan; 441(1):143-9. PubMed ID: 21851340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amino-acid substituents of dipeptide substrates of cathepsin C can determine the rate-limiting steps of catalysis.
    Rubach JK; Cui G; Schneck JL; Taylor AN; Zhao B; Smallwood A; Nevins N; Wisnoski D; Thrall SH; Meek TD
    Biochemistry; 2012 Sep; 51(38):7551-68. PubMed ID: 22928782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationship, kinetic mechanism, and selectivity for a new class of ubiquitin C-terminal hydrolase-L1 (UCH-L1) inhibitors.
    Mermerian AH; Case A; Stein RL; Cuny GD
    Bioorg Med Chem Lett; 2007 Jul; 17(13):3729-32. PubMed ID: 17449248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow-binding inhibition of gamma-glutamyl transpeptidase by gamma-boroGlu.
    Stein RL; DeCicco C; Nelson D; Thomas B
    Biochemistry; 2001 May; 40(19):5804-11. PubMed ID: 11341846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate recognition and catalysis by UCH-L1.
    Luchansky SJ; Lansbury PT; Stein RL
    Biochemistry; 2006 Dec; 45(49):14717-25. PubMed ID: 17144664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants.
    Nishikawa K; Li H; Kawamura R; Osaka H; Wang YL; Hara Y; Hirokawa T; Manago Y; Amano T; Noda M; Aoki S; Wada K
    Biochem Biophys Res Commun; 2003 Apr; 304(1):176-83. PubMed ID: 12705903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citrate-capped gold nanoparticles for the label-free detection of ubiquitin C-terminal hydrolase-1.
    Agarwal S; Mishra P; Shivange G; Kodipelli N; Moros M; de la Fuente JM; Anindya R
    Analyst; 2015 Feb; 140(4):1166-73. PubMed ID: 25516911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The serine protease HtrA2 cleaves UCH-L1 and inhibits its hydrolase activity: implication in the UCH-L1-mediated cell death.
    Park DW; Nam MK; Rhim H
    Biochem Biophys Res Commun; 2011 Nov; 415(1):24-9. PubMed ID: 22001920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of hamster arylamine N-acetyltransferase 2.
    Wang H; Liu L; Hanna PE; Wagner CR
    Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactivate in the presence of ubiquitin.
    Pickart CM; Rose IA
    J Biol Chem; 1986 Aug; 261(22):10210-7. PubMed ID: 3015923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin dimers control the hydrolase activity of UCH-L3.
    Setsuie R; Sakurai M; Sakaguchi Y; Wada K
    Neurochem Int; 2009; 54(5-6):314-21. PubMed ID: 19154770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies on the inhibition of isopeptidase T by ubiquitin aldehyde.
    Melandri F; Grenier L; Plamondon L; Huskey WP; Stein RL
    Biochemistry; 1996 Oct; 35(39):12893-900. PubMed ID: 8841133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and biochemical analyses reveal ubiquitin C-terminal hydrolase-L1 as a specific client of the peroxiredoxin II chaperone.
    Lee SP; Park CM; Kim KS; Kim E; Jeong M; Shin JY; Yun CH; Kim K; Chock PB; Chae HZ
    Arch Biochem Biophys; 2018 Feb; 640():61-74. PubMed ID: 29339092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The functions in the progesterone-induced oocyte maturation of toad ubiquitin carboxyl-terminal hydrolase (tUCH) is independent of its UCH activity].
    Sun ZG; Kong WH; Yan S; Gu Z; Zuo JK
    Shi Yan Sheng Wu Xue Bao; 2003 Apr; 36(2):105-12. PubMed ID: 12858507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of a new ubiquitin C-terminal hydrolase (UCH-1) with isopeptidase activity from chick skeletal muscle.
    Woo SK; Baek SH; Lee JI; Yoo YJ; Cho CM; Kang MS; Chung CH
    J Biochem; 1997 Apr; 121(4):684-9. PubMed ID: 9163518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.