These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
566 related articles for article (PubMed ID: 16476172)
1. Peptides released from acid goat whey by a yeast-lactobacillus association isolated from cheese microflora. Didelot S; Bordenave-Juchereau S; Rosenfeld E; Piot JM; Sannier F J Dairy Res; 2006 May; 73(2):163-70. PubMed ID: 16476172 [TBL] [Abstract][Full Text] [Related]
2. Thermal modifications of structure and co-denaturation of alpha-lactalbumin and beta-lactoglobulin induce changes of solubility and susceptibility to proteases. Bertrand-Harb C; Baday A; Dalgalarrondo M; Chobert JM; Haertlé T Nahrung; 2002 Aug; 46(4):283-9. PubMed ID: 12224426 [TBL] [Abstract][Full Text] [Related]
3. Hydrolysis of whey proteins by Lactobacillus acidophilus, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus grown in a chemically defined medium. Pescuma M; Hébert EM; Mozzi F; Valdez GF J Appl Microbiol; 2007 Nov; 103(5):1738-46. PubMed ID: 17953584 [TBL] [Abstract][Full Text] [Related]
4. Short communication: effect of kefir grains on proteolysis of major milk proteins. Ferreira IM; Pinho O; Monteiro D; Faria S; Cruz S; Perreira A; Roque AC; Tavares P J Dairy Sci; 2010 Jan; 93(1):27-31. PubMed ID: 20059900 [TBL] [Abstract][Full Text] [Related]
5. Hydrolysis of whey protein isolate with Bacillus licheniformis protease: fractionation and identification of aggregating peptides. Creusot N; Gruppen H J Agric Food Chem; 2007 Oct; 55(22):9241-50. PubMed ID: 17902618 [TBL] [Abstract][Full Text] [Related]
6. Whey fermentation by thermophilic lactic acid bacteria: evolution of carbohydrates and protein content. Pescuma M; Hébert EM; Mozzi F; Font de Valdez G Food Microbiol; 2008 May; 25(3):442-51. PubMed ID: 18355669 [TBL] [Abstract][Full Text] [Related]
7. Molecular identification and typing of natural whey starter cultures and microbiological and compositional properties of related traditional Mozzarella cheeses. de Candia S; De Angelis M; Dunlea E; Minervini F; McSweeney PL; Faccia M; Gobbetti M Int J Food Microbiol; 2007 Nov; 119(3):182-91. PubMed ID: 17884215 [TBL] [Abstract][Full Text] [Related]
8. Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin. Identification of active peptides by HPLC-MS/MS. Hernández-Ledesma B; Dávalos A; Bartolomé B; Amigo L J Agric Food Chem; 2005 Feb; 53(3):588-93. PubMed ID: 15686406 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization of peptides released from beta-lactoglobulin and alpha-lactalbumin via cardosins A and B. Barros RM; Malcata FX J Dairy Sci; 2006 Feb; 89(2):483-94. PubMed ID: 16428617 [TBL] [Abstract][Full Text] [Related]
10. Crude goat whey fermentation by Kluyveromyces marxianus and Lactobacillus rhamnosus: contribution to proteolysis and ACE inhibitory activity. Hamme V; Sannier F; Piot JM; Didelot S; Bordenave-Juchereau S J Dairy Res; 2009 May; 76(2):152-7. PubMed ID: 19121243 [TBL] [Abstract][Full Text] [Related]
11. Effects of fermentation by lactic acid bacteria on the antigenicity of bovine whey proteins. Bu G; Luo Y; Zhang Y; Chen F J Sci Food Agric; 2010 Sep; 90(12):2015-20. PubMed ID: 20583192 [TBL] [Abstract][Full Text] [Related]
12. Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity. Kim SB; Ki KS; Khan MA; Lee WS; Lee HJ; Ahn BS; Kim HS J Dairy Sci; 2007 Sep; 90(9):4043-50. PubMed ID: 17699020 [TBL] [Abstract][Full Text] [Related]
13. Impact of chymosin- and plasmin-mediated primary proteolysis on the growth and biochemical activities of lactobacilli in miniature Cheddar-type cheeses. Milesi MM; McSweeney PL; Hynes ER J Dairy Sci; 2008 Sep; 91(9):3277-90. PubMed ID: 18765587 [TBL] [Abstract][Full Text] [Related]
14. Protein-peptide interactions in mixtures of whey peptides and whey proteins. Creusot N; Gruppen H J Agric Food Chem; 2007 Mar; 55(6):2474-81. PubMed ID: 17295504 [TBL] [Abstract][Full Text] [Related]
15. Effect of high-pressure treatment at various temperatures on indigenous proteolytic enzymes and whey protein denaturation in bovine milk. Moatsou G; Bakopanos C; Katharios D; Katsaros G; Kandarakis I; Taoukis P; Politis I J Dairy Res; 2008 Aug; 75(3):262-9. PubMed ID: 18513457 [TBL] [Abstract][Full Text] [Related]
16. Proteolytic degradation of ewe milk proteins during fermentation of yoghurts and storage. El-Zahar K; Chobert JM; Sitohy M; Dalgalarrondo M; Haertlé T Nahrung; 2003 Jun; 47(3):199-206. PubMed ID: 12866624 [TBL] [Abstract][Full Text] [Related]
17. Identification of whey proteins in tradional Bulgarian yougurt. Ivanova I; Antonova-Nikolova S; Iliev I Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3b):585-8. PubMed ID: 15954659 [TBL] [Abstract][Full Text] [Related]
18. Production of an exopolysaccharide-containing whey protein concentrate by fermentation of whey. Briczinski EP; Roberts RF J Dairy Sci; 2002 Dec; 85(12):3189-97. PubMed ID: 12512592 [TBL] [Abstract][Full Text] [Related]
19. Seasonal changes in protein composition of whey from commercial manufacture of caprine and ovine specialty cheeses. Casper JL; Wendorff WL; Thomas DL J Dairy Sci; 1998 Dec; 81(12):3117-22. PubMed ID: 9891259 [TBL] [Abstract][Full Text] [Related]
20. MALDI-TOF MS characterization of glycation products of whey proteins in a glucose/galactose model system and lactose-free milk. Carulli S; Calvano CD; Palmisano F; Pischetsrieder M J Agric Food Chem; 2011 Mar; 59(5):1793-803. PubMed ID: 21319853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]