BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16476401)

  • 21. The mechanism of tyrosinase-catalysed oxidative decarboxylation of alpha-(3,4-dihydroxyphenyl)-lactic acid.
    Sugumaran M; Dali H; Semensi V
    Biochem J; 1991 Aug; 277 ( Pt 3)(Pt 3):849-53. PubMed ID: 1908223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dopaquinone model that mimics the water addition step of cofactor biogenesis in copper amine oxidases.
    Ling KQ; Sayre LM
    J Am Chem Soc; 2005 Apr; 127(13):4777-84. PubMed ID: 15796543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Indirect oxidation of amino acid phenylhydrazides by mushroom tyrosinase.
    Gasowska B; Frackowiak B; Wojtasek H
    Biochim Biophys Acta; 2006 Sep; 1760(9):1373-9. PubMed ID: 16784814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical Reactivities of
    Ito S; Sugumaran M; Wakamatsu K
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32846902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stopped-flow and steady-state study of the diphenolase activity of mushroom tyrosinase.
    Rodríguez-López JN; Fenoll LG; García-Ruiz PA; Varón R; Tudela J; Thorneley RN; García-Cánovas F
    Biochemistry; 2000 Aug; 39(34):10497-506. PubMed ID: 10956040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase.
    García-Molina F; Muñoz JL; Varón R; Rodríguez-López JN; García-Cánovas F; Tudela J
    J Agric Food Chem; 2007 Nov; 55(24):9739-49. PubMed ID: 17958393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols.
    Ito S; Wakamatsu K
    J Dermatol Sci; 2015 Oct; 80(1):18-24. PubMed ID: 26228294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Stability and catalytic properties of o-diphenol oxidase. 1. Oxidation of o-diphenols].
    Butovich IA
    Ukr Biokhim Zh (1978); 1986; 58(1):10-6. PubMed ID: 3080835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic characterization of the oxidation of carbidopa and benserazide by tyrosinase and peroxidase.
    Munoz-Munoz JL; Garcia-Molina F; Garcia-Molina M; Tudela J; García-Cánovas F; Rodriguez-Lopez JN
    Biosci Biotechnol Biochem; 2009 Jun; 73(6):1308-13. PubMed ID: 19502746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidation of 4-alkylphenols and catechols by tyrosinase: ortho-substituents alter the mechanism of quinoid formation.
    Krol ES; Bolton JL
    Chem Biol Interact; 1997 Apr; 104(1):11-27. PubMed ID: 9158692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism.
    Muñoz-Muñoz JL; García-Molina F; García-Ruiz PA; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    Biochem J; 2008 Dec; 416(3):431-40. PubMed ID: 18647136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The oxidation of phenylhydrazine by tyrosinase.
    Sung YM; Gayam SR; Wu SP
    Appl Biochem Biotechnol; 2013 Apr; 169(8):2420-9. PubMed ID: 23456281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen peroxide helps in the identification of monophenols as possible substrates of tyrosinase.
    García-Molina Mo; Muñoz-Muñoz JL; Berna J; Rodríguez-López JN; Varón R; García-Cánovas F
    Biosci Biotechnol Biochem; 2013; 77(12):2383-8. PubMed ID: 24317051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Initial mushroom tyrosinase-catalysed oxidation product of 4-hydroxyanisole is 4-methoxy-ortho-benzoquinone.
    Naish S; Cooksey CJ; Riley PA
    Pigment Cell Res; 1988; 1(6):379-81. PubMed ID: 3148921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation products of quercetin catalyzed by mushroom tyrosinase.
    Kubo I; Nihei K; Shimizu K
    Bioorg Med Chem; 2004 Oct; 12(20):5343-7. PubMed ID: 15388161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of o-diphenols by immobilized mushroom tyrosinase.
    Marín-Zamora ME; Rojas-Melgarejo F; García-Cánovas F; García-Ruiz PA
    J Biotechnol; 2009 Jan; 139(2):163-8. PubMed ID: 19047003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid.
    Sugumaran M; Dali H; Semensi V
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):353-7. PubMed ID: 1736884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tyrosinase kinetics: discrimination between two models to explain the oxidation mechanism of monophenol and diphenol substrates.
    Fenoll LG; Peñalver MJ; Rodríguez-López JN; Varón R; García-Cánovas F; Tudela J
    Int J Biochem Cell Biol; 2004 Feb; 36(2):235-46. PubMed ID: 14643889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea.
    Munoz-Munoz JL; García-Molina F; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    J Agric Food Chem; 2008 Oct; 56(19):9215-24. PubMed ID: 18788750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A continuous spectrophotometric assay for determination of the aureusidin synthase activity of tyrosinase.
    Jiménez-Atiénzar M; Pérez-Gilabert M; Cabanes J; Escribano J; Gandía-Herrero F; García-Carmona F
    Phytochem Anal; 2010; 21(3):273-8. PubMed ID: 20029997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.