BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 16476665)

  • 1. Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength.
    Gonzalez-Islas C; Wenner P
    Neuron; 2006 Feb; 49(4):563-75. PubMed ID: 16476665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of synaptic inputs to paraventricular-spinal output neurons by alpha2 adrenergic receptors.
    Li DP; Atnip LM; Chen SR; Pan HL
    J Neurophysiol; 2005 Jan; 93(1):393-402. PubMed ID: 15356178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta.
    Giustizieri M; Bernardi G; Mercuri NB; Berretta N
    J Neurophysiol; 2005 Sep; 94(3):1992-2003. PubMed ID: 15944237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory synaptic transmission differs in mouse type A and B medial vestibular nucleus neurons in vitro.
    Camp AJ; Callister RJ; Brichta AM
    J Neurophysiol; 2006 May; 95(5):3208-18. PubMed ID: 16407430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-specific generation and propagation of seizures in slices of developing neocortex: role of excitatory GABAergic synapses.
    Rheims S; Represa A; Ben-Ari Y; Zilberter Y
    J Neurophysiol; 2008 Aug; 100(2):620-8. PubMed ID: 18497363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential depression of inhibitory synaptic responses in feedforward and feedback circuits between different areas of mouse visual cortex.
    Dong H; Shao Z; Nerbonne JM; Burkhalter A
    J Comp Neurol; 2004 Jul; 475(3):361-73. PubMed ID: 15221951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus.
    Ambrogini P; Lattanzi D; Ciuffoli S; Agostini D; Bertini L; Stocchi V; Santi S; Cuppini R
    Brain Res; 2004 Aug; 1017(1-2):21-31. PubMed ID: 15261095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local circuit connections between hamster laminae III and IV dorsal horn neurons.
    Schneider SP
    J Neurophysiol; 2008 Mar; 99(3):1306-18. PubMed ID: 18184889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suprachiasmatic nucleus communicates with anterior thalamic paraventricular nucleus neurons via rapid glutamatergic and gabaergic neurotransmission: state-dependent response patterns observed in vitro.
    Zhang L; Kolaj M; Renaud LP
    Neuroscience; 2006 Sep; 141(4):2059-66. PubMed ID: 16797851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kainate receptor activation potentiates GABAergic synaptic transmission in the nucleus accumbens core.
    Crowder TL; Ariwodola OJ; Weiner JL
    Brain Res; 2006 May; 1088(1):73-82. PubMed ID: 16626659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks.
    Klueva J; Meis S; de Lima AD; Voigt T; Munsch T
    Dev Neurobiol; 2008 Jun; 68(7):934-49. PubMed ID: 18361402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA(B) receptor activation modulates GABA(A) receptor-mediated inhibition in chicken nucleus magnocellularis neurons.
    Lu Y; Burger RM; Rubel EW
    J Neurophysiol; 2005 Mar; 93(3):1429-38. PubMed ID: 15483063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus.
    Verkuyl JM; Hemby SE; Joƫls M
    Eur J Neurosci; 2004 Sep; 20(6):1665-73. PubMed ID: 15355334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network stability through homeostatic scaling of excitatory and inhibitory synapses following inactivity in CA3 of rat organotypic hippocampal slice cultures.
    Buckby LE; Jensen TP; Smith PJ; Empson RM
    Mol Cell Neurosci; 2006 Apr; 31(4):805-16. PubMed ID: 16500111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic angiotensin II AT1 receptors enhance inhibitory and excitatory synaptic neurotransmission to motoneurons and other ventral horn neurons in neonatal rat spinal cord.
    Oz M; Yang KH; O'donovan MJ; Renaud LP
    J Neurophysiol; 2005 Aug; 94(2):1405-12. PubMed ID: 16061493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An N-methyl-D-aspartate receptor mediated large, low-frequency, spontaneous excitatory postsynaptic current in neonatal rat spinal dorsal horn neurons.
    Thomson LM; Zeng J; Terman GW
    Neuroscience; 2006 Sep; 141(3):1489-501. PubMed ID: 16750886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BDNF-induced facilitation of afferent-evoked responses in lamina II neurons is reduced after neonatal spinal cord contusion injury.
    Garraway SM; Anderson AJ; Mendell LM
    J Neurophysiol; 2005 Sep; 94(3):1798-804. PubMed ID: 15901762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons.
    Liu T; Fujita T; Nakatsuka T; Kumamoto E
    J Neurophysiol; 2008 Mar; 99(3):1274-84. PubMed ID: 18216222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal patterns of dorsal root-evoked network activity in the neonatal rat spinal cord: optical and intracellular recordings.
    Ziskind-Conhaim L; Redman S
    J Neurophysiol; 2005 Sep; 94(3):1952-61. PubMed ID: 15888530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.