These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 16476795)

  • 1. Attachment of Yersinia pestis to human respiratory cell lines is inhibited by certain oligosaccharides.
    Thomas R; Brooks T
    J Med Microbiol; 2006 Mar; 55(Pt 3):309-315. PubMed ID: 16476795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural modification of a base disaccharide alters antiadhesion properties towards Yersinia pestis.
    Thomas RJ; Hacking A; Brooks TJ
    FEMS Immunol Med Microbiol; 2007 Apr; 49(3):410-4. PubMed ID: 17316368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligosaccharide receptor mimics inhibit Legionella pneumophila attachment to human respiratory epithelial cells.
    Thomas RJ; Brooks TJ
    Microb Pathog; 2004 Feb; 36(2):83-92. PubMed ID: 14687561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens.
    Thomas R; Brooks T
    J Med Microbiol; 2004 Sep; 53(Pt 9):833-840. PubMed ID: 15314189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor mimicry as novel therapeutic treatment for biothreat agents.
    Thomas RJ
    Bioeng Bugs; 2010; 1(1):17-30. PubMed ID: 21327124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells.
    Liu F; Chen H; Galván EM; Lasaro MA; Schifferli DM
    Infect Immun; 2006 Oct; 74(10):5636-44. PubMed ID: 16988239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioengineered 2'-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines.
    Weichert S; Jennewein S; Hüfner E; Weiss C; Borkowski J; Putze J; Schroten H
    Nutr Res; 2013 Oct; 33(10):831-8. PubMed ID: 24074741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague.
    Tiner BL; Sha J; Kirtley ML; Erova TE; Popov VL; Baze WB; van Lier CJ; Ponnusamy D; Andersson JA; Motin VL; Chauhan S; Chopra AK
    Infect Immun; 2015 Apr; 83(4):1318-38. PubMed ID: 25605764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesive properties of YapV and paralogous autotransporter proteins of Yersinia pestis.
    Nair MK; De Masi L; Yue M; Galván EM; Chen H; Wang F; Schifferli DM
    Infect Immun; 2015 May; 83(5):1809-19. PubMed ID: 25690102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides.
    Barthelson R; Mobasseri A; Zopf D; Simon P
    Infect Immun; 1998 Apr; 66(4):1439-44. PubMed ID: 9529065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standardized Method for Aerosol Challenge of Rodents with Yersinia pestis for Modeling Primary Pneumonic Plague.
    Anderson PE; Olson RM; Willix JL; Anderson DM
    Methods Mol Biol; 2019; 2010():29-39. PubMed ID: 31177429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague.
    Vagima Y; Zauberman A; Levy Y; Gur D; Tidhar A; Aftalion M; Shafferman A; Mamroud E
    PLoS Pathog; 2015 May; 11(5):e1004893. PubMed ID: 25974210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Double control of pili formation in Yersinia pestis].
    Vodop'ianov SO
    Mikrobiol Zh (1978); 1988; 50(6):40-5. PubMed ID: 2907926
    [No Abstract]   [Full Text] [Related]  

  • 14.
    Yang K; He Y; Park CG; Kang YS; Zhang P; Han Y; Cui Y; Bulgheresi S; Anisimov AP; Dentovskaya SV; Ying X; Jiang L; Ding H; Njiri OA; Zhang S; Zheng G; Xia L; Kan B; Wang X; Jing H; Yan M; Li W; Wang Y; Xiamu X; Chen G; Ma D; Bartra SS; Plano GV; Klena JD; Yang R; Skurnik M; Chen T
    Front Immunol; 2019; 10():96. PubMed ID: 30915064
    [No Abstract]   [Full Text] [Related]  

  • 15. Unexpected results from the application of signature-tagged mutagenesis to identify Yersinia pestis genes required for adherence and invasion.
    Leigh SA; Forman S; Perry RD; Straley SC
    Microb Pathog; 2005; 38(5-6):259-66. PubMed ID: 15925275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant.
    Galván EM; Chen H; Schifferli DM
    Infect Immun; 2007 Mar; 75(3):1272-9. PubMed ID: 17178780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intranasal Inoculation of Mice with Yersinia pestis and Processing of Pulmonary Tissue for Analysis.
    Pechous RD
    Methods Mol Biol; 2019; 2010():17-28. PubMed ID: 31177428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shift from primary pneumonic to secondary septicemic plague by decreasing the volume of intranasal challenge with Yersinia pestis in the murine model.
    Olson RM; Anderson DM
    PLoS One; 2019; 14(5):e0217440. PubMed ID: 31121001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of doxycycline and ciprofloxacin against experimental Yersinia pestis infection.
    Russell P; Eley SM; Green M; Stagg AJ; Taylor RR; Nelson M; Beedham RJ; Bell DL; Rogers D; Whittington D; Titball RW
    J Antimicrob Chemother; 1998 Feb; 41(2):301-5. PubMed ID: 9533478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial filamentation of Yersinia pestis by beta-lactam antibiotics in experimentally infected mice.
    Davis KJ; Vogel P; Fritz DL; Steele KE; Pitt ML; Welkos SL; Friedlander AM; Byrne WR
    Arch Pathol Lab Med; 1997 Aug; 121(8):865-8. PubMed ID: 9278616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.