These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16477617)

  • 21. Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor).
    Tripathy A; Xu L; Mann G; Meissner G
    Biophys J; 1995 Jul; 69(1):106-19. PubMed ID: 7669888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The decay phase of Ca2+ transients in skeletal muscle: regulation and physiology.
    Tupling AR
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):373-6. PubMed ID: 19448701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapamycin and FK506 reduce skeletal muscle voltage sensor expression and function.
    Avila G; Dirksen RT
    Cell Calcium; 2005 Jul; 38(1):35-44. PubMed ID: 15955561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Personal recollections on the discovery of the ryanodine receptors of muscle.
    Fleischer S
    Biochem Biophys Res Commun; 2008 Apr; 369(1):195-207. PubMed ID: 18182155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of recent insights into the role of the sarcoplasmic reticulum and Ca entry in uterine smooth muscle.
    Noble K; Matthew A; Burdyga T; Wray S
    Eur J Obstet Gynecol Reprod Biol; 2009 May; 144 Suppl 1():S11-9. PubMed ID: 19285773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of drugs with muscle-related side effects and affinity for calsequestrin on the calcium regulatory function of sarcoplasmic reticulum microsomes.
    Kim E; Tam M; Siems WF; Kang C
    Mol Pharmacol; 2005 Dec; 68(6):1708-15. PubMed ID: 16141311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Function and role of the sarcoplasmic reticulum in heart disease].
    Reyes-Juárez JL; Zarain-Herzberg A
    Arch Cardiol Mex; 2006; 76 Suppl 4():S18-32. PubMed ID: 17469332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alterations in the sarcoplasmic reticulum: a possible link to exercise-induced muscle damage.
    Byrd SK
    Med Sci Sports Exerc; 1992 May; 24(5):531-6. PubMed ID: 1569849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RyR1/SERCA1 cross-talk regulation of calcium transport in heavy sarcoplasmic reticulum vesicles.
    Gilchrist JS; Palahniuk C; Abrenica B; Rampersad P; Mutawe M; Cook T
    Can J Physiol Pharmacol; 2003 Mar; 81(3):220-33. PubMed ID: 12733821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excitation-contraction-relaxation cycle: role of Ca2+-regulatory membrane proteins in normal, stimulated and pathological skeletal muscle (review).
    Murray BE; Froemming GR; Maguire PB; Ohlendieck K
    Int J Mol Med; 1998 Apr; 1(4):677-87. PubMed ID: 9852282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles.
    Treves S; Vukcevic M; Maj M; Thurnheer R; Mosca B; Zorzato F
    J Physiol; 2009 Jul; 587(Pt 13):3071-9. PubMed ID: 19403606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Sukhareva M; Morrissette J; Coronado R
    Biophys J; 1994 Aug; 67(2):751-65. PubMed ID: 7948689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake.
    Leppik JA; Aughey RJ; Medved I; Fairweather I; Carey MF; McKenna MJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1414-23. PubMed ID: 15155714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel sarco(endo)plasmic reticulum proteins and calcium homeostasis in striated muscles.
    Divet A; Paesante S; Bleunven C; Anderson A; Treves S; Zorzato F
    J Muscle Res Cell Motil; 2005; 26(1):7-12. PubMed ID: 16096683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle.
    Dirksen RT
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):389-95. PubMed ID: 19448704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sarcoplasmic reticulum in aged skeletal muscle.
    Margreth A; Damiani E; Bortoloso E
    Acta Physiol Scand; 1999 Dec; 167(4):331-8. PubMed ID: 10632636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ageing, but not yet senescent, rats exhibit reduced muscle quality and sarcoplasmic reticulum function.
    Russ DW; Grandy JS; Toma K; Ward CW
    Acta Physiol (Oxf); 2011 Mar; 201(3):391-403. PubMed ID: 20874807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans.
    Hill CA; Thompson MW; Ruell PA; Thom JM; White MJ
    J Physiol; 2001 Mar; 531(Pt 3):871-8. PubMed ID: 11251066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The sarcoplasmic reticulum and SERCA: a nexus for muscular adaptive thermogenesis.
    Gamu D; Juracic ES; Hall KJ; Tupling AR
    Appl Physiol Nutr Metab; 2020 Jan; 45(1):1-10. PubMed ID: 31116956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.