BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16477676)

  • 1. Carbon-13 chemical shift anisotropy in DNA bases from field dependence of solution NMR relaxation rates.
    Ying J; Grishaev A; Bax A
    Magn Reson Chem; 2006 Mar; 44(3):302-10. PubMed ID: 16477676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.
    Ying J; Grishaev A; Bryce DL; Bax A
    J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints.
    Hansen AL; Al-Hashimi HM
    J Magn Reson; 2006 Apr; 179(2):299-307. PubMed ID: 16431143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of large elongated RNA by NMR carbon relaxation.
    Hansen AL; Al-Hashimi HM
    J Am Chem Soc; 2007 Dec; 129(51):16072-82. PubMed ID: 18047338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical determination of nucleic acid magnetic susceptibility: importance for the study of dynamics by field-induced residual dipolar couplings.
    Bryce DL; Boisbouvier J; Bax A
    J Am Chem Soc; 2004 Sep; 126(35):10820-1. PubMed ID: 15339148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy.
    Bryce DL; Grishaev A; Bax A
    J Am Chem Soc; 2005 May; 127(20):7387-96. PubMed ID: 15898787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of 13C CSA tensors: extension of the model-independent approach to an RNA kissing complex undergoing anisotropic rotational diffusion in solution.
    Ravindranathan S; Kim CH; Bodenhausen G
    J Biomol NMR; 2005 Nov; 33(3):163-74. PubMed ID: 16331421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the glycosidic bond angle chi in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy.
    Duchardt E; Richter C; Ohlenschläger O; Görlach M; Wöhnert J; Schwalbe H
    J Am Chem Soc; 2004 Feb; 126(7):1962-70. PubMed ID: 14971929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross correlations between 13C-1H dipolar interactions and 15N chemical shift anisotropy in nucleic acids.
    Ravindranathan S; Kim CH; Bodenhausen G
    J Biomol NMR; 2003 Dec; 27(4):365-75. PubMed ID: 14512733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR cross-correlated relaxation rates reveal ion coordination sites in DNA.
    Fiala R; Spacková N; Foldynová-Trantírková S; Sponer J; Sklenár V; Trantírek L
    J Am Chem Soc; 2011 Sep; 133(35):13790-3. PubMed ID: 21819145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative measurement of transverse and longitudinal cross-correlation between 13C-1H dipolar interaction and 13C chemical shift anisotropy: application to a 13C-labeled DNA duplex.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1999 Feb; 136(2):169-75. PubMed ID: 9986759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy.
    Wu Z; Delaglio F; Tjandra N; Zhurkin VB; Bax A
    J Biomol NMR; 2003 Aug; 26(4):297-315. PubMed ID: 12815257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate CSA measurements from uniformly isotopically labeled biomolecules at high magnetic field.
    Kiihne SR; Creemers AF; Lugtenburg J; de Groot HJ
    J Magn Reson; 2005 Jan; 172(1):1-8. PubMed ID: 15589401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid automated determination of chemical shift anisotropy values in the carbonyl and carboxyl groups of fd-y21m bacteriophage using solid state NMR.
    Aharoni T; Goldbourt A
    J Biomol NMR; 2018 Oct; 72(1-2):55-67. PubMed ID: 30141148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR solution structure of the N3' --> P5' phosphoramidate duplex d(CGCGAATTCGCG)2 by the iterative relaxation matrix approach.
    Ding D; Gryaznov SM; Wilson WD
    Biochemistry; 1998 Sep; 37(35):12082-93. PubMed ID: 9724520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudo-CSA restraints for NMR refinement of nucleic acid structure.
    Grishaev A; Ying J; Bax A
    J Am Chem Soc; 2006 Aug; 128(31):10010-1. PubMed ID: 16881619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational diffusion tensor of nucleic acids from 13C NMR relaxation.
    Boisbouvier J; Wu Z; Ono A; Kainosho M; Bax A
    J Biomol NMR; 2003 Oct; 27(2):133-42. PubMed ID: 12913409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of protein structure against non-redundant carbonyl 13C NMR relaxation.
    Tjandra N; Suzuki M; Chang SL
    J Biomol NMR; 2007 Jul; 38(3):243-53. PubMed ID: 17554496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.