BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16477957)

  • 1. Impairment of error monitoring following sleep deprivation.
    Tsai LL; Young HY; Hsieh S; Lee CS
    Sleep; 2005 Jun; 28(6):707-13. PubMed ID: 16477957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immediate error correction process following sleep deprivation.
    Hsieh S; Cheng IC; Tsai LL
    J Sleep Res; 2007 Jun; 16(2):137-47. PubMed ID: 17542943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of monetary incentives on cognitive performance and error monitoring following sleep deprivation.
    Hsieh S; Li TH; Tsai LL
    Sleep; 2010 Apr; 33(4):499-507. PubMed ID: 20394319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Error correction maintains post-error adjustments after one night of total sleep deprivation.
    Hsieh S; Tsai CY; Tsai LL
    J Sleep Res; 2009 Jun; 18(2):159-66. PubMed ID: 19645961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance monitoring following total sleep deprivation: effects of task type and error rate.
    Renn RP; Cote KA
    Int J Psychophysiol; 2013 Apr; 88(1):64-73. PubMed ID: 23384887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.
    Van Dongen HP; Maislin G; Mullington JM; Dinges DF
    Sleep; 2003 Mar; 26(2):117-26. PubMed ID: 12683469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waking quantitative electroencephalogram and auditory event-related potentials following experimentally induced sleep fragmentation.
    Cote KA; Milner CE; Osip SL; Ray LB; Baxter KD
    Sleep; 2003 Sep; 26(6):687-94. PubMed ID: 14572121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of experimental sleep fragmentation on error monitoring.
    Ko CH; Fang YW; Tsai LL; Hsieh S
    Biol Psychol; 2015 Jan; 104():163-72. PubMed ID: 25541514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep deprivation differentially affects subcomponents of cognitive control.
    Kusztor A; Raud L; Juel BE; Nilsen AS; Storm JF; Huster RJ
    Sleep; 2019 Apr; 42(4):. PubMed ID: 30649563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of sleepiness on performance monitoring: I know what I am doing, but do I care?
    Murphy TI; Richard M; Masaki H; Segalowitz SJ
    J Sleep Res; 2006 Mar; 15(1):15-21. PubMed ID: 16489998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of moderate sleep loss on neurophysiologic signals during working-memory task performance.
    Smith ME; McEvoy LK; Gevins A
    Sleep; 2002 Nov; 25(7):784-94. PubMed ID: 12405615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Awareness of errors is reduced by sleep loss.
    Boardman JM; Cross ZR; Bravo MM; Andrillon T; Aidman E; Anderson C; Drummond SPA
    Psychophysiology; 2024 May; 61(5):e14523. PubMed ID: 38238554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meditation as an intervention for cognitive disturbances following total sleep deprivation.
    Chatterjee A; Ray K; Panjwani U; Thakur L; Anand JP
    Indian J Med Res; 2012 Dec; 136(6):1031-8. PubMed ID: 23391801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.
    Nir Y; Andrillon T; Marmelshtein A; Suthana N; Cirelli C; Tononi G; Fried I
    Nat Med; 2017 Dec; 23(12):1474-1480. PubMed ID: 29106402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of infraslow fluctuations in autonomic and central vigilance markers: skin temperature, EEG β power and ERP P300 latency.
    Ramautar JR; Romeijn N; Gómez-Herrero G; Piantoni G; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):158-64. PubMed ID: 23313606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance monitoring during sleep inertia after a 1-h daytime nap.
    Asaoka S; Masaki H; Ogawa K; Murphy TI; Fukuda K; Yamazaki K
    J Sleep Res; 2010 Sep; 19(3):436-43. PubMed ID: 20374446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of acute sleep deprivation on visual evoked potentials in professional drivers.
    Jackson ML; Croft RJ; Owens K; Pierce RJ; Kennedy GA; Crewther D; Howard ME
    Sleep; 2008 Sep; 31(9):1261-9. PubMed ID: 18788651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in error monitoring: an event-related potential study.
    Wiersema JR; van der Meere JJ; Roeyers H
    Neuropsychologia; 2007 Apr; 45(8):1649-57. PubMed ID: 17303199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive deterioration and changes of P300 during total sleep deprivation.
    Lee HJ; Kim L; Suh KY
    Psychiatry Clin Neurosci; 2003 Oct; 57(5):490-6. PubMed ID: 12950703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.