BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16478066)

  • 1. Simulation of surface plasmon resonance of metallic nanoparticles by the boundary-element method.
    Liaw JW
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):108-16. PubMed ID: 16478066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of retardation on localized surface plasmon resonances in a metallic nanorod.
    Davis TJ; Vernon KC; Gómez DE
    Opt Express; 2009 Dec; 17(26):23655-63. PubMed ID: 20052075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method.
    Lee JS; Han S; Shirdel J; Koo S; Sadiq D; Lienau C; Park N
    Opt Express; 2011 Jun; 19(13):12342-7. PubMed ID: 21716471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the plasmon resonances of metallic nanoantennas.
    Bryant GW; García de Abajo FJ; Aizpurua J
    Nano Lett; 2008 Feb; 8(2):631-6. PubMed ID: 18189444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-dimensional eigenmodal analysis of plasmonic nanostructures.
    Guo H; Oswald B; Arbenz P
    Opt Express; 2012 Feb; 20(5):5481-500. PubMed ID: 22418354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume integral equation analysis of surface plasmon resonance of nanoparticles.
    Ewe WB; Chu HS; Li EP
    Opt Express; 2007 Dec; 15(26):18200-8. PubMed ID: 19551118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss.
    Marini A; Skryabin DV; Malomed B
    Opt Express; 2011 Mar; 19(7):6616-22. PubMed ID: 21451689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation.
    Fujii M
    Opt Express; 2010 Dec; 18(26):27731-47. PubMed ID: 21197048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scattering of a surface plasmon polariton by a localized dielectric surface defect.
    Arias RE; Maradudin AA
    Opt Express; 2013 Apr; 21(8):9734-56. PubMed ID: 23609682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells.
    Wang Q; Tang C; Chen J; Zhan P; Wang Z
    Opt Express; 2011 Nov; 19(24):23889-900. PubMed ID: 22109413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.
    Solis D; Willingham B; Nauert SL; Slaughter LS; Olson J; Swanglap P; Paul A; Chang WS; Link S
    Nano Lett; 2012 Mar; 12(3):1349-53. PubMed ID: 22292470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of surface plasmon polaritons and other waves on the radiation of a dipole emitter close to a metallic nanowire antenna.
    Liu C; Liu H; Zhong Y
    Opt Express; 2014 Oct; 22(21):25539-49. PubMed ID: 25401587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness.
    Dintinger J; Martin OJ
    Opt Express; 2009 Feb; 17(4):2364-74. PubMed ID: 19219140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase modulation of surface plasmon polaritons by surface relief dielectric structures.
    Wang Q; Yuan X; Tan P; Zhang D
    Opt Express; 2008 Nov; 16(23):19271-6. PubMed ID: 19582019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.
    Buil S; Laverdant J; Berini B; Maso P; Hermier JP; Quélin X
    Opt Express; 2012 May; 20(11):11968-75. PubMed ID: 22714182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter.
    Hartmann N; Piredda G; Berthelot J; des Francs GC; Bouhelier A; Hartschuh A
    Nano Lett; 2012 Jan; 12(1):177-81. PubMed ID: 22175822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF; Lin YJ; Tsai DP
    Opt Express; 2010 Feb; 18(4):3510-8. PubMed ID: 20389360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators.
    Lai YC; Chen CK; Yang YH; Yen TJ
    Opt Express; 2012 Jan; 20(3):2876-80. PubMed ID: 22330524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonances in complementary metamaterials and nanoapertures.
    Rockstuhl C; Zentgraf T; Meyrath TP; Giessen H; Lederer F
    Opt Express; 2008 Feb; 16(3):2080-90. PubMed ID: 18542288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scattering losses in multidielectric structures designed for giant optical field enhancement.
    Lereu AL; Zerrad M; Ndiaye C; Lemarchand F; Amra C
    Appl Opt; 2014 Feb; 53(4):A412-6. PubMed ID: 24514246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.