These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16478069)

  • 1. Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance.
    Yoshioka S; Kinoshita S
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):134-41. PubMed ID: 16478069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum.
    Plattner L
    J R Soc Interface; 2004 Nov; 1(1):49-59. PubMed ID: 16849152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed electromagnetic simulation for the structural color of butterfly wings.
    Lee RT; Smith GS
    Appl Opt; 2009 Jul; 48(21):4177-90. PubMed ID: 19623232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly.
    Yoshioka S; Kinoshita S
    Proc Biol Sci; 2006 Jan; 273(1583):129-34. PubMed ID: 16555778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exaggeration and suppression of iridescence: the evolution of two-dimensional butterfly structural colours.
    Wickham S; Large MC; Poladian L; Jermiin LS
    J R Soc Interface; 2006 Feb; 3(6):99-108. PubMed ID: 16849221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The colouration toolkit of the Pipevine Swallowtail butterfly, Battus philenor: thin films, papiliochromes, and melanin.
    Stavenga DG; Leertouwer HL; Wilts BD
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Jun; 200(6):547-61. PubMed ID: 24715265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales.
    Pirih P; Wilts BD; Stavenga DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Oct; 197(10):987-97. PubMed ID: 21744009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms.
    Wilts BD; Vey AJM; Briscoe AD; Stavenga DG
    BMC Evol Biol; 2017 Nov; 17(1):226. PubMed ID: 29162029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral reflectance properties of iridescent pierid butterfly wings.
    Wilts BD; Pirih P; Stavenga DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jun; 197(6):693-702. PubMed ID: 21344203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wing Scale Orientation Alters Reflection Directions in the Green Hairstreak Chrysozephyrus smaragdinus (Lycaenidae; Lepidoptera).
    Imafuku M; Ogihara N
    Zoolog Sci; 2016 Dec; 33(6):616-622. PubMed ID: 27927097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the fine-tuned lemon coloration of a pierid butterfly Catopsilia pomona.
    Mishra M; Choudhury A; Achary PS; Sahoo H
    Microscopy (Oxf); 2017 Dec; 66(6):414-423. PubMed ID: 29036478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.
    Wilts BD; Matsushita A; Arikawa K; Stavenga DG
    J R Soc Interface; 2015 Oct; 12(111):20150717. PubMed ID: 26446560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable multilayer reflection together with long-pass filtering pigment determines the wing coloration of papilionid butterflies of the nireus group.
    Trzeciak TM; Wilts BD; Stavenga DG; Vukusic P
    Opt Express; 2012 Apr; 20(8):8877-90. PubMed ID: 22513598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies.
    Siddique RH; Diewald S; Leuthold J; Hölscher H
    Opt Express; 2013 Jun; 21(12):14351-61. PubMed ID: 23787623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging scatterometry of butterfly wing scales.
    Stavenga DG; Leertouwer HL; Pirih P; Wehling MF
    Opt Express; 2009 Jan; 17(1):193-202. PubMed ID: 19129888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity and divergence in ultraviolet reflecting structures on Dogface butterfly wings.
    Fenner J; Rodriguez-Caro L; Counterman B
    Arthropod Struct Dev; 2019 Jul; 51():14-22. PubMed ID: 31176003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridescence from photonic crystals and its suppression in butterfly scales.
    Poladian L; Wickham S; Lee K; Large MC
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S233-42. PubMed ID: 18980932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers.
    Wilts BD; Leertouwer HL; Stavenga DG
    J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S185-92. PubMed ID: 18782721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Varying and unchanging whiteness on the wings of dusk-active and shade-inhabiting
    Ge D; Wu G; Yang L; Kim HN; Hallwachs W; Burns JM; Janzen DH; Yang S
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7379-7384. PubMed ID: 28652351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking.
    Siddique RH; Vignolini S; Bartels C; Wacker I; Hölscher H
    Sci Rep; 2016 Nov; 6():36204. PubMed ID: 27805005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.