These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 16478102)
1. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Viswanathan S; Wu LC; Huang MR; Ho JA Anal Chem; 2006 Feb; 78(4):1115-21. PubMed ID: 16478102 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Alfonta L; Willner I; Throckmorton DJ; Singh AK Anal Chem; 2001 Nov; 73(21):5287-95. PubMed ID: 11721931 [TBL] [Abstract][Full Text] [Related]
3. Application of ganglioside-sensitized liposomes in a flow injection immunoanalytical system for the determination of cholera toxin. Ho JA; Wu LC; Huang MR; Lin YJ; Baeumner AJ; Durst RA Anal Chem; 2007 Jan; 79(1):246-50. PubMed ID: 17194147 [TBL] [Abstract][Full Text] [Related]
4. [Liposome immunosensor for picloram in water based on electrochemical polymerization]. Li T; Zeng GM; Tang L; Zhang Y; Li YP Huan Jing Ke Xue; 2008 Jun; 29(6):1660-5. PubMed ID: 18763519 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical immunosensor based on bismuth nanocomposite film and cadmium ions functionalized titanium phosphates for the detection of anthrax protective antigen toxin. Sharma MK; Narayanan J; Upadhyay S; Goel AK Biosens Bioelectron; 2015 Dec; 74():299-304. PubMed ID: 26148674 [TBL] [Abstract][Full Text] [Related]
6. Controlled carbon nanotube layers for impedimetric immunosensors: High performance label free detection and quantification of anti-cholera toxin antibody. Palomar Q; Gondran C; Holzinger M; Marks R; Cosnier S Biosens Bioelectron; 2017 Nov; 97():177-183. PubMed ID: 28599177 [TBL] [Abstract][Full Text] [Related]
7. Construction of supported lipid membrane modified piezoelectric biosensor for sensitive assay of cholera toxin based on surface-agglutination of ganglioside-bearing liposomes. Chen H; Hu QY; Yue-Zheng ; Jiang JH; Shen GL; Yu RQ Anal Chim Acta; 2010 Jan; 657(2):204-9. PubMed ID: 20005333 [TBL] [Abstract][Full Text] [Related]
8. Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Viswanathan S; Rani C; Vijay Anand A; Ho JA Biosens Bioelectron; 2009 Mar; 24(7):1984-9. PubMed ID: 19038538 [TBL] [Abstract][Full Text] [Related]
9. Binding assay for cholera toxin based on sequestration electrochemistry using lactose labeled with an electroactive compound. Kuramitz H; Miyagaki S; Ueno E; Hata N; Taguchi S; Sugawara K Analyst; 2011 Jun; 136(11):2373-8. PubMed ID: 21491033 [TBL] [Abstract][Full Text] [Related]
10. Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Ahn-Yoon S; DeCory TR; Baeumner AJ; Durst RA Anal Chem; 2003 May; 75(10):2256-61. PubMed ID: 12918964 [TBL] [Abstract][Full Text] [Related]
11. Gold-nanostructured immunosensor for the electrochemical sensing of biotin based on liposomal competitive assay. Ho JA; Chiu JK; Hong JC; Lin CC; Hwang KC; Hwu JR J Nanosci Nanotechnol; 2009 Apr; 9(4):2324-9. PubMed ID: 19437971 [TBL] [Abstract][Full Text] [Related]
12. An ultrasensitive chemiluminescence biosensor for cholera toxin based on ganglioside-functionalized supported lipid membrane and liposome. Chen H; Zheng Y; Jiang JH; Wu HL; Shen GL; Yu RQ Biosens Bioelectron; 2008 Dec; 24(4):684-9. PubMed ID: 18672355 [TBL] [Abstract][Full Text] [Related]
13. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. Goda T; Toya M; Matsumoto A; Miyahara Y ACS Appl Mater Interfaces; 2015 Dec; 7(49):27440-8. PubMed ID: 26588324 [TBL] [Abstract][Full Text] [Related]
14. Cholera toxin subunit B detection in microfluidic devices. Bunyakul N; Edwards KA; Promptmas C; Baeumner AJ Anal Bioanal Chem; 2009 Jan; 393(1):177-86. PubMed ID: 18777170 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical determination of M. tuberculosis antigen based on Poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform. Thakur H; Kaur N; Sareen D; Prabhakar N Talanta; 2017 Aug; 171():115-123. PubMed ID: 28551117 [TBL] [Abstract][Full Text] [Related]
16. A capacitive immunosensor for detection of cholera toxin. Labib M; Hedström M; Amin M; Mattiasson B Anal Chim Acta; 2009 Feb; 634(2):255-61. PubMed ID: 19185129 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical fabrication of single-walled carbon nanotubes-DNA complexes by poly(ethylenedioxythiophene) and photocurrent generation by excitation of an intercalated chromophore. Bae AH; Hatano T; Nakashima N; Murakami H; Shinkai S Org Biomol Chem; 2004 Apr; 2(8):1139-44. PubMed ID: 15064789 [TBL] [Abstract][Full Text] [Related]
18. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Wang HS; Li TH; Jia WL; Xu HY Biosens Bioelectron; 2006 Dec; 22(5):664-9. PubMed ID: 16621509 [TBL] [Abstract][Full Text] [Related]
19. Photoelectrochemical immunosensor for label-free detection and quantification of anti-cholera toxin antibody. Haddour N; Chauvin J; Gondran C; Cosnier S J Am Chem Soc; 2006 Aug; 128(30):9693-8. PubMed ID: 16866523 [TBL] [Abstract][Full Text] [Related]
20. A label-free electrochemical immunosensor for hepatitis B based on hyaluronic acid-carbon nanotube hybrid film. Cabral DG; Lima EC; Moura P; Dutra RF Talanta; 2016; 148():209-15. PubMed ID: 26653442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]