BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16478118)

  • 21. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode.
    Wu J; Bicker W; Lindner W
    J Sep Sci; 2008 May; 31(9):1492-503. PubMed ID: 18461572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water-acetonitrile mobile phase.
    D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F
    Anal Chim Acta; 2009 Jul; 646(1-2):47-61. PubMed ID: 19523555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces.
    Nagase K; Kobayashi J; Kikuchi A; Akiyama Y; Kanazawa H; Okano T
    Langmuir; 2008 Jan; 24(2):511-7. PubMed ID: 18085801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling retention and selectivity as a function of pH and column temperature in liquid chromatography.
    Gagliardi LG; Castells CB; Ràfols C; Rosés M; Bosch E
    Anal Chem; 2006 Aug; 78(16):5858-67. PubMed ID: 16906733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of pressure drop on solute retention and column efficiency in supercritical fluid chromatography. Part 2: Modified carbon dioxide as mobile phase.
    Rajendran A; Gilkison TS; Mazzotti M
    J Sep Sci; 2008 May; 31(8):1279-89. PubMed ID: 18389520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retention in overloaded columns, an experimental approach.
    González FR; Romero LM
    J Chromatogr A; 2006 Sep; 1128(1-2):203-7. PubMed ID: 16815425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Apr; 1187(1-2):165-79. PubMed ID: 18313063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC).
    Hao Z; Xiao B; Weng N
    J Sep Sci; 2008 May; 31(9):1449-64. PubMed ID: 18435508
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retention mechanisms in super/subcritical fluid chromatography on packed columns.
    Lesellier E
    J Chromatogr A; 2009 Mar; 1216(10):1881-90. PubMed ID: 18996534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of carbon dioxide mobile phase density profiles in packed capillary columns by Raman microscopy.
    Baker LR; Orton AW; Goates SR; Horn BA
    Appl Spectrosc; 2009 Jan; 63(1):108-11. PubMed ID: 19146727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solute partitioning between the ionic liquid 1-n-butyl-3-methylimidazolium tetrafluoroborate and supercritical CO2 from capillary-column chromatography.
    Planeta J; Roth M
    J Phys Chem B; 2005 Aug; 109(31):15165-71. PubMed ID: 16852919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A unified classification of stationary phases for packed column supercritical fluid chromatography.
    West C; Lesellier E
    J Chromatogr A; 2008 May; 1191(1-2):21-39. PubMed ID: 18384800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling the effects of different mobile phase compositions and temperatures on the retention of various analytes in HPLC.
    Jouyban A; Soltanpour S; Acree WE; Thomas D; Agrafiotou P; Pappa-Louisi A
    J Sep Sci; 2009 Nov; 32(22):3898-905. PubMed ID: 19842120
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model IV. Aromatic stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 May; 1115(1-2):233-45. PubMed ID: 16529759
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of temperature on the chromatographic retention of ionizable compounds. III. Modeling retention of pharmaceuticals as a function of eluent pH and column temperature in RPLC.
    Gagliardi LG; Castells CB; Ràfols C; Rosés M; Bosch E
    J Sep Sci; 2008 Apr; 31(6-7):969-80. PubMed ID: 18381700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column.
    Nelson DM; Marcus RK
    Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Mobile-Phase Composition and Temperature on the Selectivity of Poly(N-isopropylacrylamide)-Bonded Silica Gel in Reversed-Phase Liquid Chromatography.
    Go H; Sudo Y; Hosoya K; Ikegami T; Tanaka N
    Anal Chem; 1998 Oct; 70(19):4086-93. PubMed ID: 21651245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases.
    Anderson JL; Armstrong DW
    Anal Chem; 2005 Oct; 77(19):6453-62. PubMed ID: 16194112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of pressure and temperature on the physico-chemical properties of mobile phase mixtures commonly used in high-performance liquid chromatography.
    Billen J; Broeckhoven K; Liekens A; Choikhet K; Rozing G; Desmet G
    J Chromatogr A; 2008 Nov; 1210(1):30-44. PubMed ID: 18834987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.