BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16478484)

  • 1. Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1.
    Tsai YK; Lin TH
    J Appl Microbiol; 2006 Mar; 100(3):446-59. PubMed ID: 16478484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products.
    Vaillancourt K; Moineau S; Frenette M; Lessard C; Vadeboncoeur C
    J Bacteriol; 2002 Feb; 184(3):785-93. PubMed ID: 11790749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific point mutations in Lactobacillus casei ATCC 27139 cause a phenotype switch from Lac- to Lac+.
    Tsai YK; Chen HW; Lo TC; Lin TH
    Microbiology (Reading); 2009 Mar; 155(Pt 3):751-760. PubMed ID: 19246746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus.
    Vaughan EE; van den Bogaard PT; Catzeddu P; Kuipers OP; de Vos WM
    J Bacteriol; 2001 Feb; 183(4):1184-94. PubMed ID: 11157930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators.
    Alpert CA; Siebers U
    J Bacteriol; 1997 Mar; 179(5):1555-62. PubMed ID: 9045813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis.
    Xiong ZQ; Kong LH; Meng HL; Cui JM; Xia YJ; Wang SJ; Ai LZ
    J Ind Microbiol Biotechnol; 2019 May; 46(5):751-758. PubMed ID: 30715626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual organization for lactose and galactose gene clusters in Lactobacillus helveticus.
    Fortina MG; Ricci G; Mora D; Guglielmetti S; Manachini PL
    Appl Environ Microbiol; 2003 Jun; 69(6):3238-43. PubMed ID: 12788721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae.
    Afzal M; Shafeeq S; Kuipers OP
    Appl Environ Microbiol; 2014 Sep; 80(17):5349-58. PubMed ID: 24951784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gal genes for the Leloir pathway of Lactobacillus casei 64H.
    Bettenbrock K; Alpert CA
    Appl Environ Microbiol; 1998 Jun; 64(6):2013-9. PubMed ID: 9603808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactose metabolism by Streptococcus mutans.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2004 Oct; 70(10):6047-52. PubMed ID: 15466549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Szatraj K; Kosiorek K
    Microbiologyopen; 2019 May; 8(5):e00714. PubMed ID: 30099846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.
    Zeng L; Das S; Burne RA
    J Bacteriol; 2010 May; 192(9):2434-44. PubMed ID: 20190045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine.
    Bidart GN; Rodríguez-Díaz J; Pérez-Martínez G; Yebra MJ
    Sci Rep; 2018 May; 8(1):7152. PubMed ID: 29740087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Pérez-Martínez G
    J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans.
    Rosey EL; Stewart GC
    J Bacteriol; 1992 Oct; 174(19):6159-70. PubMed ID: 1400164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sugar utilisation and conservation of the gal-lac gene cluster in Streptococcus thermophilus.
    van den Bogaard PT; Hols P; Kuipers OP; Kleerebezem M; de Vos WM
    Syst Appl Microbiol; 2004 Feb; 27(1):10-7. PubMed ID: 15053316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved.
    Leong-Morgenthaler P; Zwahlen MC; Hottinger H
    J Bacteriol; 1991 Mar; 173(6):1951-7. PubMed ID: 1705929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon.
    Fornwald JA; Schmidt FJ; Adams CW; Rosenberg M; Brawner ME
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2130-4. PubMed ID: 3031664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.