BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 16478495)

  • 41. Anthraquinone-2,6-disulfonate (AQDS) as a catalyst to enhance the reductive decolourisation of the azo dyes Reactive Red 2 and Congo Red under anaerobic conditions.
    Costa MC; Mota S; Nascimento RF; Dos Santos AB
    Bioresour Technol; 2010 Jan; 101(1):105-10. PubMed ID: 19717298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of alternative electron acceptors on selenium(IV) reduction by Anaeromyxobacter dehalogenans.
    He Q; Yao K
    Bioresour Technol; 2011 Feb; 102(3):3578-80. PubMed ID: 21041077
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradation of octogen and hexogen by
    Nagar S; Shaw AK; Anand S; Celin SM; Rai PK
    Environ Technol; 2022 Mar; 43(7):1003-1012. PubMed ID: 32811372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS).
    Cao F; Liu TX; Wu CY; Li FB; Li XM; Yu HY; Tong H; Chen MJ
    J Agric Food Chem; 2012 Nov; 60(45):11238-44. PubMed ID: 23095105
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial degradation of explosives: biotransformation versus mineralization.
    Hawari J; Beaudet S; Halasz A; Thiboutot S; Ampleman G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):605-18. PubMed ID: 11131384
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alkaline extracellular reduction: isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02.
    Ma C; Zhuang L; Zhou SG; Yang GQ; Yuan Y; Xu RX
    J Appl Microbiol; 2012 May; 112(5):883-91. PubMed ID: 22385319
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene.
    Aulenta F; Maio VD; Ferri T; Majone M
    Bioresour Technol; 2010 Dec; 101(24):9728-33. PubMed ID: 20709536
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2].
    Ma C; Yang GQ; Lu Q; Zhou SG
    Huan Jing Ke Xue; 2014 Sep; 35(9):3522-9. PubMed ID: 25518675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Abundance and diversity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-metabolizing bacteria in UXO-contaminated marine sediments.
    Zhao JS; Manno D; Hawari J
    FEMS Microbiol Ecol; 2007 Mar; 59(3):706-17. PubMed ID: 17381523
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds.
    Field EK; Gerlach R; Viamajala S; Jennings LK; Peyton BM; Apel WA
    Biodegradation; 2013 Jun; 24(3):437-50. PubMed ID: 23135488
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electron shuttles enhance the degradation of sulfamethoxazole coupled with Fe(III) reduction by Shewanella oneidensis MR-1.
    Zhou C; Wang H; Si Y; Wu K; Yousaf A
    Environ Toxicol Pharmacol; 2018 Sep; 62():156-163. PubMed ID: 30029095
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photoinductive activity of humic acid fractions with the presence of Fe(III): the role of aromaticity and oxygen groups involved in fractions.
    Ou X; Chen S; Quan X; Zhao H
    Chemosphere; 2008 Jun; 72(6):925-31. PubMed ID: 18462778
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions.
    Bhushan B; Paquet L; Halasz A; Spain JC; Hawari J
    Biochem Biophys Res Commun; 2003 Jun; 306(2):509-15. PubMed ID: 12804594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of the redox mediator sodium anthraquinone-2,6-disulphonate (AQDS) on the reductive decolourisation of the azo dye Reactive Red 2 (RR2) in one- and two-stage anaerobic systems.
    da Silva ME; Firmino PI; dos Santos AB
    Bioresour Technol; 2012 Oct; 121():1-7. PubMed ID: 22854130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway.
    Fournier D; Halasz A; Thiboutot S; Ampleman G; Manno D; Hawari J
    Environ Sci Technol; 2004 Aug; 38(15):4130-3. PubMed ID: 15352451
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors.
    Cervantes FJ; Mancilla AR; Ríos-del Toro EE; Alpuche-Solís AG; Montoya-Lorenzana L
    J Hazard Mater; 2011 Nov; 195():201-7. PubMed ID: 21880424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol.
    Adrian NR; Arnett CM
    Chemosphere; 2007 Jan; 66(10):1849-56. PubMed ID: 17095047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atrazine photodegradation in aqueous solution induced by interaction of humic acids and iron: photoformation of iron(II) and hydrogen peroxide.
    Ou X; Quan X; Chen S; Zhao H; Zhang Y
    J Agric Food Chem; 2007 Oct; 55(21):8650-6. PubMed ID: 17892253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.