These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16478538)

  • 1. Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity.
    Kang J; Gocke CB; Yu H
    BMC Biochem; 2006 Feb; 7():5. PubMed ID: 16478538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors.
    Grégoire S; Yang XJ
    Mol Cell Biol; 2005 Mar; 25(6):2273-87. PubMed ID: 15743823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity.
    Zhu B; Gulick T
    Mol Cell Biol; 2004 Sep; 24(18):8264-75. PubMed ID: 15340086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications.
    Zhao X; Sternsdorf T; Bolger TA; Evans RM; Yao TP
    Mol Cell Biol; 2005 Oct; 25(19):8456-64. PubMed ID: 16166628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMO-1 modification of MEF2A regulates its transcriptional activity.
    Riquelme C; Barthel KK; Liu X
    J Cell Mol Med; 2006; 10(1):132-44. PubMed ID: 16563226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2.
    Han A; He J; Wu Y; Liu JO; Chen L
    J Mol Biol; 2005 Jan; 345(1):91-102. PubMed ID: 15567413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation.
    Grégoire S; Tremblay AM; Xiao L; Yang Q; Ma K; Nie J; Mao Z; Wu Z; Giguère V; Yang XJ
    J Biol Chem; 2006 Feb; 281(7):4423-33. PubMed ID: 16356933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional regulatory regions of human transcription factor MEF2C.
    Janson CG; Chen Y; Li Y; Leifer D
    Brain Res Mol Brain Res; 2001 Dec; 97(1):70-82. PubMed ID: 11744164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific recruitment of transcriptional co-repressor Cabin1 by myocyte enhancer factor-2.
    Han A; Pan F; Stroud JC; Youn HD; Liu JO; Chen L
    Nature; 2003 Apr; 422(6933):730-4. PubMed ID: 12700764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of the MADS-Box transcription factor MEF2C enhances its DNA binding activity.
    Molkentin JD; Li L; Olson EN
    J Biol Chem; 1996 Jul; 271(29):17199-204. PubMed ID: 8663403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of pokemon 1 activity by sumoylation.
    Roh HE; Lee MN; Jeon BN; Choi WI; Kim YJ; Yu MY; Hur MW
    Cell Physiol Biochem; 2007; 20(1-4):167-80. PubMed ID: 17595526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HDAC4, a human histone deacetylase related to yeast HDA1, is a transcriptional corepressor.
    Wang AH; Bertos NR; Vezmar M; Pelletier N; Crosato M; Heng HH; Th'ng J; Han J; Yang XJ
    Mol Cell Biol; 1999 Nov; 19(11):7816-27. PubMed ID: 10523670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor.
    Zhang CL; McKinsey TA; Lu JR; Olson EN
    J Biol Chem; 2001 Jan; 276(1):35-9. PubMed ID: 11022042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis.
    Paroni G; Mizzau M; Henderson C; Del Sal G; Schneider C; Brancolini C
    Mol Biol Cell; 2004 Jun; 15(6):2804-18. PubMed ID: 15075374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dephosphorylation and caspase processing generate distinct nuclear pools of histone deacetylase 4.
    Paroni G; Fontanini A; Cernotta N; Foti C; Gupta MP; Yang XJ; Fasino D; Brancolini C
    Mol Cell Biol; 2007 Oct; 27(19):6718-32. PubMed ID: 17636017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity.
    Stankovic-Valentin N; Deltour S; Seeler J; Pinte S; Vergoten G; Guérardel C; Dejean A; Leprince D
    Mol Cell Biol; 2007 Apr; 27(7):2661-75. PubMed ID: 17283066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMRTE inhibits MEF2C transcriptional activation by targeting HDAC4 and 5 to nuclear domains.
    Wu X; Li H; Park EJ; Chen JD
    J Biol Chem; 2001 Jun; 276(26):24177-85. PubMed ID: 11304536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Something about SUMO inhibits transcription.
    Gill G
    Curr Opin Genet Dev; 2005 Oct; 15(5):536-41. PubMed ID: 16095902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells.
    Little GH; Bai Y; Williams T; Poizat C
    J Biol Chem; 2007 Mar; 282(10):7219-31. PubMed ID: 17179159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression.
    Zweier M; Gregor A; Zweier C; Engels H; Sticht H; Wohlleber E; Bijlsma EK; Holder SE; Zenker M; Rossier E; Grasshoff U; Johnson DS; Robertson L; Firth HV; ; Ekici AB; Reis A; Rauch A
    Hum Mutat; 2010 Jun; 31(6):722-33. PubMed ID: 20513142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.