These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 16478668)

  • 41. The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes.
    Wang Z; Irianto J; Kazun S; Wang W; Knight MM
    Osteoarthritis Cartilage; 2015 Feb; 23(2):289-99. PubMed ID: 25450844
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effects of TGF-beta1 and IGF-I on the biomechanics and cytoskeleton of single chondrocytes.
    Leipzig ND; Eleswarapu SV; Athanasiou KA
    Osteoarthritis Cartilage; 2006 Dec; 14(12):1227-36. PubMed ID: 16824771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical properties of bovine articular cartilage under microscale indentation loading from atomic force microscopy.
    Park S; Costa KD; Ateshian GA; Hong KS
    Proc Inst Mech Eng H; 2009 Apr; 223(3):339-47. PubMed ID: 19405439
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes.
    Guilak F; Erickson GR; Ting-Beall HP
    Biophys J; 2002 Feb; 82(2):720-7. PubMed ID: 11806914
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Osteoarthritic changes in the biphasic mechanical properties of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Williams GM; Upton ML; Setton LA; Guilak F
    J Biomech; 2005 Mar; 38(3):509-17. PubMed ID: 15652549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Research of topographic ultra-structure and biomechanical properties of living chondrocytes cells with atomic force microscopy].
    Liu GY; Wu ZH; Chen PP; Li B; Xie L; Han D; Qiu GX
    Zhonghua Yi Xue Za Zhi; 2009 Apr; 89(13):912-5. PubMed ID: 19671294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy.
    Tripathy S; Berger EJ
    Comput Methods Biomech Biomed Engin; 2012; 15(5):475-86. PubMed ID: 22432922
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy.
    Youn I; Choi JB; Cao L; Setton LA; Guilak F
    Osteoarthritis Cartilage; 2006 Sep; 14(9):889-97. PubMed ID: 16626979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes.
    Wu JZ; Herzog W
    J Biomech; 2002 Jul; 35(7):931-42. PubMed ID: 12052395
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In situ chondrocyte viscoelasticity.
    Han SK; Madden R; Abusara Z; Herzog W
    J Biomech; 2012 Sep; 45(14):2450-6. PubMed ID: 22884037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients.
    Jeon JE; Schrobback K; Hutmacher DW; Klein TJ
    Osteoarthritis Cartilage; 2012 Aug; 20(8):906-15. PubMed ID: 22548797
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chondrocyte dedifferentiation increases cell stiffness by strengthening membrane-actin adhesion.
    Sliogeryte K; Botto L; Lee DA; Knight MM
    Osteoarthritis Cartilage; 2016 May; 24(5):912-20. PubMed ID: 26706702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A poroviscohyperelastic model for numerical analysis of mechanical behavior of single chondrocyte.
    Nguyen TD; Oloyede A; Gu Y
    Comput Methods Biomech Biomed Engin; 2016; 19(2):126-36. PubMed ID: 25588670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Retaining zonal chondrocyte phenotype by means of novel growth environments.
    Darling EM; Athanasiou KA
    Tissue Eng; 2005; 11(3-4):395-403. PubMed ID: 15871669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of oxygen on zonal marker expression in human articular chondrocytes.
    Schrobback K; Malda J; Crawford RW; Upton Z; Leavesley DI; Klein TJ
    Tissue Eng Part A; 2012 May; 18(9-10):920-33. PubMed ID: 22097912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The biomechanical role of the chondrocyte pericellular matrix in articular cartilage.
    Alexopoulos LG; Setton LA; Guilak F
    Acta Biomater; 2005 May; 1(3):317-25. PubMed ID: 16701810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of collagen degradation on chondrocyte volume and morphology in bovine articular cartilage following a hypotonic challenge.
    Turunen SM; Lammi MJ; Saarakkala S; Han SK; Herzog W; Tanska P; Korhonen RK
    Biomech Model Mechanobiol; 2013 Jun; 12(3):417-29. PubMed ID: 22710890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential?
    Darling EM; Zauscher S; Block JA; Guilak F
    Biophys J; 2007 Mar; 92(5):1784-91. PubMed ID: 17158567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Viscoelastic Properties Measurement of Human Lymphocytes by Atomic Force Microscopy Based on Magnetic Beads Cell Isolation.
    Mi Li ; Lianqing Liu ; Xiubin Xiao ; Ning Xi ; Yuechao Wang
    IEEE Trans Nanobioscience; 2016 Jul; 15(5):398-411. PubMed ID: 28113818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.