These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 16478677)
1. Biosynthesis of novel carotenoid families based on unnatural carbon backbones: a model for diversification of natural product pathways. Tobias AV; Arnold FH Biochim Biophys Acta; 2006 Feb; 1761(2):235-46. PubMed ID: 16478677 [TBL] [Abstract][Full Text] [Related]
2. Construction of carotenoid biosynthetic pathways using squalene synthase. Furubayashi M; Li L; Katabami A; Saito K; Umeno D FEBS Lett; 2014 Jan; 588(3):436-42. PubMed ID: 24333579 [TBL] [Abstract][Full Text] [Related]
3. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Yoon SH; Kim JE; Lee SH; Park HM; Choi MS; Kim JY; Lee SH; Shin YC; Keasling JD; Kim SW Appl Microbiol Biotechnol; 2007 Feb; 74(1):131-9. PubMed ID: 17115209 [TBL] [Abstract][Full Text] [Related]
4. Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C(30), C(35), C(40), C(45), C(50) carotenoids. Wang F; Jiang JG; Chen Q Biotechnol Adv; 2007; 25(3):211-22. PubMed ID: 17257797 [TBL] [Abstract][Full Text] [Related]
5. High versus low level expression of the lycopene biosynthesis genes from Pantoea ananatis in Escherichia coli. Albermann C Biotechnol Lett; 2011 Feb; 33(2):313-9. PubMed ID: 20882315 [TBL] [Abstract][Full Text] [Related]
6. 3-β-Glucosyl-3'-β-quinovosyl zeaxanthin, a novel carotenoid glycoside synthesized by Escherichia coli cells expressing the Pantoea ananatis carotenoid biosynthesis gene cluster. Choi SK; Osawa A; Maoka T; Hattan J; Ito K; Uchiyama A; Suzuki M; Shindo K; Misawa N Appl Microbiol Biotechnol; 2013 Oct; 97(19):8479-86. PubMed ID: 23880877 [TBL] [Abstract][Full Text] [Related]
7. Redesign, reconstruction, and directed extension of the Brevibacterium linens C40 carotenoid pathway in Escherichia coli. Kim SH; Park YH; Schmidt-Dannert C; Lee PC Appl Environ Microbiol; 2010 Aug; 76(15):5199-206. PubMed ID: 20525861 [TBL] [Abstract][Full Text] [Related]
8. Strain-dependent carotenoid productions in metabolically engineered Escherichia coli. Chae HS; Kim KH; Kim SC; Lee PC Appl Biochem Biotechnol; 2010 Dec; 162(8):2333-44. PubMed ID: 20559754 [TBL] [Abstract][Full Text] [Related]
9. Nonnatural biosynthetic pathway for 2-hydroxylated xanthophylls with C Li L; Furubayashi M; Otani Y; Maoka T; Misawa N; Kawai-Noma S; Saito K; Umeno D J Biosci Bioeng; 2019 Oct; 128(4):438-444. PubMed ID: 31029539 [TBL] [Abstract][Full Text] [Related]
10. A C35 carotenoid biosynthetic pathway. Umeno D; Arnold FH Appl Environ Microbiol; 2003 Jun; 69(6):3573-9. PubMed ID: 12788765 [TBL] [Abstract][Full Text] [Related]
11. Carotenoid biosynthesis in Gloeobacter violaceus PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymes. Steiger S; Jackisch Y; Sandmann G Arch Microbiol; 2005 Dec; 184(4):207-14. PubMed ID: 16235086 [TBL] [Abstract][Full Text] [Related]
12. Carotenogenesis gene cluster and phytoene desaturase catalyzing both three- and four-step desaturations from Rhodobacter azotoformans. Zhang J; Lu L; Yin L; Xie S; Xiao M FEMS Microbiol Lett; 2012 Aug; 333(2):138-45. PubMed ID: 22640029 [TBL] [Abstract][Full Text] [Related]
13. Kinetic variations determine the product pattern of phytoene desaturase from Rubrivivax gelatinosus. Stickforth P; Sandmann G Arch Biochem Biophys; 2007 May; 461(2):235-41. PubMed ID: 17428435 [TBL] [Abstract][Full Text] [Related]
14. Heterologous carotenoid-biosynthetic enzymes: functional complementation and effects on carotenoid profiles in Escherichia coli. Song GH; Kim SH; Choi BH; Han SJ; Lee PC Appl Environ Microbiol; 2013 Jan; 79(2):610-8. PubMed ID: 23144136 [TBL] [Abstract][Full Text] [Related]
15. A novel carotenoid biosynthetic route via oxidosqualene. Otani Y; Maoka T; Kawai-Noma S; Saito K; Umeno D Biochem Biophys Res Commun; 2022 Apr; 599():75-80. PubMed ID: 35176628 [TBL] [Abstract][Full Text] [Related]
16. Phytoene desaturase, CrtI, of the purple photosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene and lycopene. Harada J; Nagashima KV; Takaichi S; Misawa N; Matsuura K; Shimada K Plant Cell Physiol; 2001 Oct; 42(10):1112-8. PubMed ID: 11673627 [TBL] [Abstract][Full Text] [Related]
17. A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes. Furubayashi M; Ikezumi M; Takaichi S; Maoka T; Hemmi H; Ogawa T; Saito K; Tobias AV; Umeno D Nat Commun; 2015 Jul; 6():7534. PubMed ID: 26168783 [TBL] [Abstract][Full Text] [Related]
18. Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum. Heider SA; Peters-Wendisch P; Netzer R; Stafnes M; Brautaset T; Wendisch VF Appl Microbiol Biotechnol; 2014 Feb; 98(3):1223-35. PubMed ID: 24270893 [TBL] [Abstract][Full Text] [Related]
19. Construction of a Nonnatural C Li L; Furubayashi M; Hosoi T; Seki T; Otani Y; Kawai-Noma S; Saito K; Umeno D ACS Synth Biol; 2019 Mar; 8(3):511-520. PubMed ID: 30689939 [TBL] [Abstract][Full Text] [Related]
20. Identification of a carotenoid oxygenase synthesizing acyclic xanthophylls: combinatorial biosynthesis and directed evolution. Mijts BN; Lee PC; Schmidt-Dannert C Chem Biol; 2005 Apr; 12(4):453-60. PubMed ID: 15850982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]