These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1647878)

  • 1. Signal-induced Ca2+ oscillations: properties of a model based on Ca(2+)-induced Ca2+ release.
    Dupont G; Berridge MJ; Goldbeter A
    Cell Calcium; 1991; 12(2-3):73-85. PubMed ID: 1647878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation.
    Goldbeter A; Dupont G; Berridge MJ
    Proc Natl Acad Sci U S A; 1990 Feb; 87(4):1461-5. PubMed ID: 2304911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal-induced Ca2+ oscillations through the regulation of the inositol 1,4,5-trisphosphate-gated Ca2+ channel: an allosteric model.
    Laurent M; Claret M
    J Theor Biol; 1997 Jun; 186(3):307-26. PubMed ID: 9219669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of calcium spiking frequency in pituitary gonadotrophs by a single-pool cytoplasmic oscillator.
    Stojilkovic SS; Tomic M; Kukuljan M; Catt KJ
    Mol Pharmacol; 1994 May; 45(5):1013-21. PubMed ID: 8190091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody to the inositol trisphosphate receptor blocks thimerosal-enhanced Ca(2+)-induced Ca2+ release and Ca2+ oscillations in hamster eggs.
    Miyazaki S; Shirakawa H; Nakada K; Honda Y; Yuzaki M; Nakade S; Mikoshiba K
    FEBS Lett; 1992 Sep; 309(2):180-4. PubMed ID: 1324195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic calcium oscillations: a two pool model.
    Berridge MJ
    Cell Calcium; 1991; 12(2-3):63-72. PubMed ID: 2059999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors.
    Ferris CD; Cameron AM; Huganir RL; Snyder SH
    Nature; 1992 Mar; 356(6367):350-2. PubMed ID: 1312682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histamine-evoked Ca2+ oscillations in HeLa cells are sensitive to methylxanthines but insensitive to ryanodine.
    Diarra A; Wang R; Garneau L; Gallo-Payet N; Sauvé R
    Pflugers Arch; 1994 Jan; 426(1-2):129-38. PubMed ID: 7511800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs.
    Miyazaki S; Shirakawa H; Nakada K; Honda Y
    Dev Biol; 1993 Jul; 158(1):62-78. PubMed ID: 8392472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillations and waves of cytosolic calcium: insights from theoretical models.
    Dupont G; Goldbeter A
    Bioessays; 1992 Jul; 14(7):485-93. PubMed ID: 1445288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of InsP3-induced Ca2+ oscillations in permeabilized blowfly salivary gland cells: contribution of mitochondria.
    Zimmermann B
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):707-19. PubMed ID: 10856123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release.
    Dupont G; Goldbeter A
    Cell Calcium; 1993 Apr; 14(4):311-22. PubMed ID: 8370067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular calcium waves generated by Ins(1,4,5)P3-dependent mechanisms.
    Rooney TA; Thomas AP
    Cell Calcium; 1993 Nov; 14(10):674-90. PubMed ID: 8131186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-trisphosphate signal in a model for intracellular Ca2+ oscillations.
    Houart G; Dupont G; Goldbeter A
    Bull Math Biol; 1999 May; 61(3):507-30. PubMed ID: 17883229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient inositol 1,4,5-trisphosphate-induced Ca2+ release: a model based on regulatory Ca(2+)-binding sites along the permeation pathway.
    Swillens S; Combettes L; Champeil P
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10074-8. PubMed ID: 7937840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inositol trisphosphate and calcium oscillations.
    Berridge MJ
    Biochem Soc Symp; 2007; (74):1-7. PubMed ID: 17233575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate.
    Parker I; Yao Y; Ilyin V
    Biophys J; 1996 Jan; 70(1):222-37. PubMed ID: 8770200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium signalling during mammalian fertilization.
    Miyazaki S
    Ciba Found Symp; 1995; 188():235-47; discussion 247-51. PubMed ID: 7587620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strontium promotes calcium oscillations in mouse meiotic oocytes and early embryos through InsP3 receptors, and requires activation of phospholipase and the synergistic action of InsP3.
    Zhang D; Pan L; Yang LH; He XK; Huang XY; Sun FZ
    Hum Reprod; 2005 Nov; 20(11):3053-61. PubMed ID: 16055456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantal release, incremental detection, and long-period Ca2+ oscillations in a model based on regulatory Ca2+-binding sites along the permeation pathway.
    Dupont G; Swillens S
    Biophys J; 1996 Oct; 71(4):1714-22. PubMed ID: 8889149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.