These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 16478818)
1. The adenosine 5'-triphosphate-sensitive potassium channel in endocrine cells of the human ovary: role in membrane potential generation and steroidogenesis. Kunz L; Richter JS; Mayerhofer A J Clin Endocrinol Metab; 2006 May; 91(5):1950-5. PubMed ID: 16478818 [TBL] [Abstract][Full Text] [Related]
2. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A. Cui Y; Tinker A; Clapp LH Br J Pharmacol; 2003 May; 139(1):122-8. PubMed ID: 12746230 [TBL] [Abstract][Full Text] [Related]
3. Human oocytes express ATP-sensitive K(+) channels. Du Q; Jovanović S; Sukhodub A; Barratt E; Drew E; Whalley KM; Kay V; McLaughlin M; Telfer EE; Barratt CL; Jovanović A Hum Reprod; 2010 Nov; 25(11):2774-82. PubMed ID: 20847183 [TBL] [Abstract][Full Text] [Related]
4. The role of K⁺ conductances in regulating membrane excitability in human gastric corpus smooth muscle. Lee JY; Ko EJ; Ahn KD; Kim S; Rhee PL Am J Physiol Gastrointest Liver Physiol; 2015 Apr; 308(7):G625-33. PubMed ID: 25591864 [TBL] [Abstract][Full Text] [Related]
5. Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways. Kajioka S; Nakayama S; Asano H; Seki N; Naito S; Brading AF J Pharmacol Exp Ther; 2008 Oct; 327(1):114-23. PubMed ID: 18596222 [TBL] [Abstract][Full Text] [Related]
6. Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta. Wu J; Hu J; Chen YP; Takeo T; Suga S; Dechon J; Liu Q; Yang KC; St John PA; Hu G; Wang H; Wakui M J Pharmacol Exp Ther; 2006 Oct; 319(1):155-64. PubMed ID: 16837559 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis and characteristics of KATP channel in human corporal smooth muscle cells. Insuk SO; Chae MR; Choi JW; Yang DK; Sim JH; Lee SW Int J Impot Res; 2003 Aug; 15(4):258-66. PubMed ID: 12934053 [TBL] [Abstract][Full Text] [Related]
8. Characterization of K(ATP)-channels in rat basilar and middle cerebral arteries: studies of vasomotor responses and mRNA expression. Jansen-Olesen I; Mortensen CH; El-Bariaki N; Ploug KB Eur J Pharmacol; 2005 Oct; 523(1-3):109-18. PubMed ID: 16226739 [TBL] [Abstract][Full Text] [Related]
9. Lack of manifestations of diazoxide/5-hydroxydecanoate-sensitive KATP channel in rat brain nonsynaptosomal mitochondria. Brustovetsky T; Shalbuyeva N; Brustovetsky N J Physiol; 2005 Oct; 568(Pt 1):47-59. PubMed ID: 16051627 [TBL] [Abstract][Full Text] [Related]
10. A key role for the subunit SUR2B in the preferential activation of vascular KATP channels by isoflurane. Fujita H; Ogura T; Tamagawa M; Uemura H; Sato T; Ishida A; Imamaki M; Kimura F; Miyazaki M; Nakaya H Br J Pharmacol; 2006 Nov; 149(5):573-80. PubMed ID: 17001304 [TBL] [Abstract][Full Text] [Related]
11. Actions of ZD0947, a novel ATP-sensitive K+ channel opener, on membrane currents in human detrusor myocytes. Aishima M; Tomoda T; Yunoki T; Nakano T; Seki N; Yonemitsu Y; Sueishi K; Naito S; Ito Y; Teramoto N Br J Pharmacol; 2006 Nov; 149(5):542-50. PubMed ID: 17016513 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of liver regeneration by adenosine triphosphate-sensitive K⁺ channel opener (diazoxide) after partial hepatectomy. Nakagawa Y; Yoshioka M; Abe Y; Uchinami H; Ohba T; Ono K; Yamamoto Y Transplantation; 2012 Jun; 93(11):1094-100. PubMed ID: 22466787 [TBL] [Abstract][Full Text] [Related]
13. Iptakalim, a vascular ATP-sensitive potassium (KATP) channel opener, closes rat pancreatic beta-cell KATP channels and increases insulin release. Misaki N; Mao X; Lin YF; Suga S; Li GH; Liu Q; Chang Y; Wang H; Wakui M; Wu J J Pharmacol Exp Ther; 2007 Aug; 322(2):871-8. PubMed ID: 17522344 [TBL] [Abstract][Full Text] [Related]
15. Electrophysiological and pharmacological characterization of the K(ATP) channel involved in the K+-current responses to FSH and adenosine in the follicular cells of Xenopus oocyte. Fujita R; Kimura S; Kawasaki S; Watanabe S; Watanabe N; Hirano H; Matsumoto M; Sasaki K J Physiol Sci; 2007 Feb; 57(1):51-61. PubMed ID: 17239259 [TBL] [Abstract][Full Text] [Related]
16. Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Liu Y; Ren G; O'Rourke B; Marbán E; Seharaseyon J Mol Pharmacol; 2001 Feb; 59(2):225-30. PubMed ID: 11160857 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological and molecular characterization of ATP-sensitive K(+) conductances in CART and NPY/AgRP expressing neurons of the hypothalamic arcuate nucleus. van den Top M; Lyons DJ; Lee K; Coderre E; Renaud LP; Spanswick D Neuroscience; 2007 Feb; 144(3):815-24. PubMed ID: 17137725 [TBL] [Abstract][Full Text] [Related]
18. SUR2A C-terminal fragments reduce KATP currents and ischaemic tolerance of rat cardiac myocytes. Rainbow RD; Lodwick D; Hudman D; Davies NW; Norman RI; Standen NB J Physiol; 2004 Jun; 557(Pt 3):785-94. PubMed ID: 15020694 [TBL] [Abstract][Full Text] [Related]
19. Expression of adenosine triphosphate-sensitive potassium channel subunits in female rat reproductive tissues: overlapping distribution of messenger ribonucleic acid for weak inwardly rectifying potassium channel subunit 6.1 and sulfonylurea-binding regulatory subunit 2. Chien EK; Zhang Y; Furuta H; Hara M Am J Obstet Gynecol; 1999 May; 180(5):1121-6. PubMed ID: 10329865 [TBL] [Abstract][Full Text] [Related]
20. MCC-134, a novel vascular relaxing agent, is an inverse agonist for the pancreatic-type ATP-sensitive K(+) channel. Shindo T; Katayama Y; Horio Y; Kurachi Y J Pharmacol Exp Ther; 2000 Jan; 292(1):131-5. PubMed ID: 10604939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]