BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16479132)

  • 1. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normalized amplitude quotient for parametrization of the glottal flow.
    Alku P; Bäckström T; Vilkman E
    J Acoust Soc Am; 2002 Aug; 112(2):701-10. PubMed ID: 12186049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameterization of the voice source by combining spectral decay and amplitude features of the glottal flow.
    Alku P; Vilkman E; Laukkanen AM
    J Speech Lang Hear Res; 1998 Oct; 41(5):990-1002. PubMed ID: 9771623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative.
    Vilkman E; Alku P; Vintturi J
    Folia Phoniatr Logop; 2002; 54(3):144-57. PubMed ID: 12077506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emotions in vowel segments of continuous speech: analysis of the glottal flow using the normalised amplitude quotient.
    Airas M; Alku P
    Phonetica; 2006; 63(1):26-46. PubMed ID: 16514274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice Source Variation Between Vowels in Male Opera Singers.
    Sundberg J; Lã FM; Gill BP
    J Voice; 2016 Sep; 30(5):509-17. PubMed ID: 26350698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of vocal aging using parameters extracted from the glottal signal.
    Forero Mendoza LA; Cataldo E; Vellasco MM; Silva MA; Apolinário JA
    J Voice; 2014 Sep; 28(5):532-7. PubMed ID: 24880675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of glottal voice source quantification parameters in breathy, normal and pressed phonation of female and male speakers.
    Alku P; Vilkman E
    Folia Phoniatr Logop; 1996; 48(5):240-54. PubMed ID: 8828282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects on the glottal voice source of vocal loudness variation in untrained female and male voices.
    Sundberg J; Fahlstedt E; Morell A
    J Acoust Soc Am; 2005 Feb; 117(2):879-85. PubMed ID: 15759707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow Glottogram Characteristics and Perceived Degree of Phonatory Pressedness.
    Millgård M; Fors T; Sundberg J
    J Voice; 2016 May; 30(3):287-92. PubMed ID: 26001499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
    Sundberg J; Titze I; Scherer R
    J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of two inverse filtering methods in parameterization of the glottal closing phase characteristics in different phonation types.
    Lehto L; Airas M; Björkner E; Sundberg J; Alku P
    J Voice; 2007 Mar; 21(2):138-50. PubMed ID: 16478660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the spectral tilt of the glottal source from telephone speech using a deep neural network.
    Jokinen E; Alku P
    J Acoust Soc Am; 2017 Apr; 141(4):EL327. PubMed ID: 28464691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evaluation of inverse filtering using physical systems with known glottal flow and tract characteristics.
    Chu DT; Li K; Epps J; Smith J; Wolfe J
    J Acoust Soc Am; 2013 May; 133(5):EL358-62. PubMed ID: 23656094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skewing of the glottal flow with respect to the glottal area measured in natural production of vowels.
    Alku P; Murtola T; Malinen J; Geneid A; Vilkman E
    J Acoust Soc Am; 2019 Oct; 146(4):2501. PubMed ID: 31671985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse filtering of nasalized vowels using synthesized speech.
    Gobl C; Mahshie J
    J Voice; 2013 Mar; 27(2):155-69. PubMed ID: 23231805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral correlates of glottal voice source waveform characteristics.
    Gauffin J; Sundberg J
    J Speech Hear Res; 1989 Sep; 32(3):556-65. PubMed ID: 2779199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prolonged oral reading on F0, SPL, subglottal pressure and amplitude characteristics of glottal flow waveforms.
    Vilkman E; Lauri ER; Alku P; Sala E; Sihvo M
    J Voice; 1999 Jun; 13(2):303-12. PubMed ID: 10442763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of lung volume on the glottal voice source.
    Iwarsson J; Thomasson M; Sundberg J
    J Voice; 1998 Dec; 12(4):424-33. PubMed ID: 9988029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIM--simultaneous inverse filtering and matching of a glottal flow model for acoustic speech signals.
    Fröhlich M; Michaelis D; Strube HW
    J Acoust Soc Am; 2001 Jul; 110(1):479-88. PubMed ID: 11508972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.