These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16479175)

  • 1. Lessons learned fighting HIV can be applied to anti-cancer drug design.
    Gustchina A; Jaskólski M; Wlodawer A
    Cell Cycle; 2006 Mar; 5(5):463-4. PubMed ID: 16479175
    [No Abstract]   [Full Text] [Related]  

  • 2. HIV protease inhibitors.
    Carr A; Cooper DA
    AIDS; 1996; 10 Suppl A():S151-7. PubMed ID: 8883623
    [No Abstract]   [Full Text] [Related]  

  • 3. Aspartic proteases of Plasmodium falciparum as the target of HIV-1 protease inhibitors.
    Savarino A; Cauda R; Cassone A
    J Infect Dis; 2005 Apr; 191(8):1381-2; author reply 1382-3. PubMed ID: 15776390
    [No Abstract]   [Full Text] [Related]  

  • 4. Aspartic proteases in drug discovery.
    Eder J; Hommel U; Cumin F; Martoglio B; Gerhartz B
    Curr Pharm Des; 2007; 13(3):271-85. PubMed ID: 17313361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide inhibitors of HIV-1 and HIV-2 proteases: a comparative study.
    Pichová I; Weber J; Litera J; Konvalinka J; Vondrásek J; Soucek M; Strop P; Majer P; Heuser AM; Kraeusslich HG
    Leukemia; 1997 Apr; 11 Suppl 3():120-2. PubMed ID: 9209317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir.
    Kuhnert M; Steuber H; Diederich WE
    J Med Chem; 2014 Jul; 57(14):6266-72. PubMed ID: 25006983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors.
    Mastrolorenzo A; Rusconi S; Scozzafava A; Barbaro G; Supuran CT
    Curr Med Chem; 2007; 14(26):2734-48. PubMed ID: 18045120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The inhibition of Candida-albicans-secreted aspartic proteases by three different HIV protease inhibitors.
    Monod M; Borg-von Zepelin M; Telenti A; Sanglard D
    Dermatology; 1999; 198(4):412-4. PubMed ID: 10490300
    [No Abstract]   [Full Text] [Related]  

  • 9. Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design.
    Li M; Laco GS; Jaskolski M; Rozycki J; Alexandratos J; Wlodawer A; Gustchina A
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18332-7. PubMed ID: 16352712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HIV proteinase inhibitors: do they really work against Candida in a clinical setting?
    Cassone A; Cauda R
    Trends Microbiol; 2002 Apr; 10(4):177-8. PubMed ID: 11912024
    [No Abstract]   [Full Text] [Related]  

  • 11. Anti-fungal therapy at the HAART of viral therapy.
    Munro CA; Hube B
    Trends Microbiol; 2002 Apr; 10(4):173-7. PubMed ID: 11912023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based design of nonpeptidic HIV protease inhibitors from a cyclooctylpyranone lead structure.
    Romines KR; Watenpaugh KD; Howe WJ; Tomich PK; Lovasz KD; Morris JK; Janakiraman MN; Lynn JC; Horng MM; Chong KT
    J Med Chem; 1995 Oct; 38(22):4463-73. PubMed ID: 7473573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of inhibitors for drug-resistant HIV-1 aspartic protease mutants.
    Frecer V; Miertus S; Tossi A; Romeo D
    Drug Des Discov; 1998 Oct; 15(4):211-31. PubMed ID: 10546067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of bicyclic acetals as Beta Secretase (BACE1) inhibitors.
    Innocenti R; Lenci E; Menchi G; Pupi A; Trabocchi A
    Bioorg Med Chem; 2017 Oct; 25(19):5077-5083. PubMed ID: 28359674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the human immunodeficiency virus (HIV) proteinase inhibitors saquinavir and indinavir on in vitro activities of secreted aspartyl proteinases of Candida albicans isolates from HIV-infected patients.
    Korting HC; Schaller M; Eder G; Hamm G; Böhmer U; Hube B
    Antimicrob Agents Chemother; 1999 Aug; 43(8):2038-42. PubMed ID: 10428932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting HIV-1 protease: a test of drug-design methodologies.
    West ML; Fairlie DP
    Trends Pharmacol Sci; 1995 Feb; 16(2):67-75. PubMed ID: 7762084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the S3 and S3' subsite specificities of feline immunodeficiency virus (FIV) protease: development of a broad-based protease inhibitor efficacious against FIV, SIV, and HIV in vitro and ex vivo.
    Lee T; Laco GS; Torbett BE; Fox HS; Lerner DL; Elder JH; Wong CH
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):939-44. PubMed ID: 9448264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based prediction of binding affinities and molecular design of peptide ligands.
    Luque I; Freire E
    Methods Enzymol; 1998; 295():100-27. PubMed ID: 9750216
    [No Abstract]   [Full Text] [Related]  

  • 19. Insight into the structural similarity between HIV protease and secreted aspartic protease-2 and binding mode analysis of HIV-Candida albicans inhibitors.
    Calugi C; Guarna A; Trabocchi A
    J Enzyme Inhib Med Chem; 2013 Oct; 28(5):936-43. PubMed ID: 22803674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structures of retroviral proteases and their inhibitor-bound complexes.
    Ringe D
    Methods Enzymol; 1994; 241():157-77. PubMed ID: 7854176
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.