These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16479175)

  • 21. Design, synthesis, and biological evaluation of HIV/FIV protease inhibitors incorporating a conformationally constrained macrocycle with a small P3' residue.
    Mak CC; Le VD; Lin YC; Elder JH; Wong CH
    Bioorg Med Chem Lett; 2001 Jan; 11(2):219-22. PubMed ID: 11206463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of HIV-protease inhibitors on opportunistic parasites.
    Pozio E; Morales MA
    Trends Parasitol; 2005 Feb; 21(2):58-63. PubMed ID: 15664527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HIV protease inhibitors.
    Winslow DL; Otto MJ
    AIDS; 1995; 9 Suppl A():S183-92. PubMed ID: 8819585
    [No Abstract]   [Full Text] [Related]  

  • 24. Inhibition of Candida albicans secreted aspartic protease by a novel series of peptidomimetics, also active on the HIV-1 protease.
    Skrbec D; Romeo D
    Biochem Biophys Res Commun; 2002 Oct; 297(5):1350-3. PubMed ID: 12372437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and synthesis of broad-based mono- and bi- cyclic inhibitors of FIV and HIV proteases.
    Mak CC; Brik A; Lerner DL; Elder JH; Morris GM; Olson AJ; Wong CH
    Bioorg Med Chem; 2003 May; 11(9):2025-40. PubMed ID: 12670654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two orthogonal approaches to overcome multi-drug resistant HIV-1s: development of protease inhibitors and entry inhibitors based on CXCR4 antagonists.
    Tamamura H; Fujii N
    Curr Drug Targets Infect Disord; 2004 Jun; 4(2):103-10. PubMed ID: 15180458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potency comparison of peptidomimetic inhibitors against HIV-1 and HIV-2 proteinases: design of equipotent lead compounds.
    Weber J; Majer P; Litera J; Urban J; Soucek M; Vondrásek J; Konvalinka J; Novek P; Sedlácek J; Strop P; Kräusslich HG; Pichová I
    Arch Biochem Biophys; 1997 May; 341(1):62-9. PubMed ID: 9143353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic binding of inhibitors to the protease from HIV type 1.
    Asante-Appiah E; Chan WW
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):113-7. PubMed ID: 8670094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aspartic peptidase inhibitors: implications in drug development.
    Dash C; Kulkarni A; Dunn B; Rao M
    Crit Rev Biochem Mol Biol; 2003; 38(2):89-119. PubMed ID: 12749695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antimalarial effects of HIV proteinase inhibitors: common compounds but structurally distinct enzymes.
    Wyatt DM; Berry C
    J Infect Dis; 2005 Aug; 192(4):705-6. PubMed ID: 16028143
    [No Abstract]   [Full Text] [Related]  

  • 31. Comparison of inhibitor binding to feline and human immunodeficiency virus proteases: structure-based drug design and the resistance problem.
    Dunn BM; Pennington MW; Frase DC; Nash K
    Biopolymers; 1999; 51(1):69-77. PubMed ID: 10380354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HIV-Protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases.
    Borg-von Zepelin M; Meyer I; Thomssen R; Würzner R; Sanglard D; Telenti A; Monod M
    J Invest Dermatol; 1999 Nov; 113(5):747-51. PubMed ID: 10571729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational drug design and HIV: hopes and limitations.
    Goody RS
    Nat Med; 1995 Jun; 1(6):519-20. PubMed ID: 7585113
    [No Abstract]   [Full Text] [Related]  

  • 34. The crystal structure of protease Sapp1p from Candida parapsilosis in complex with the HIV protease inhibitor ritonavir.
    Dostál J; Brynda J; Hrušková-Heidingsfeldová O; Pachl P; Pichová I; Rezáčová P
    J Enzyme Inhib Med Chem; 2012 Feb; 27(1):160-5. PubMed ID: 22146051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitors.
    Friedler A; Blumenzweig I; Baraz L; Steinitz M; Kotler M; Gilon C
    J Mol Biol; 1999 Mar; 287(1):93-101. PubMed ID: 10074409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. C2-symmetrical tetrahydroxyazepanes as inhibitors of glycosidases and HIV/FIV proteases.
    Qian X; Morís-Varas F; Fitzgerald MC; Wong CH
    Bioorg Med Chem; 1996 Dec; 4(12):2055-69. PubMed ID: 9022971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What Are We Missing? The Detergent Triton X-100 Added to Avoid Compound Aggregation Can Affect Assay Results in an Unpredictable Manner.
    Ehlert FGR; Linde K; Diederich WE
    ChemMedChem; 2017 Sep; 12(17):1419-1423. PubMed ID: 28745428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin.
    Hartman AM; Mondal M; Radeva N; Klebe G; Hirsch AK
    Int J Mol Sci; 2015 Aug; 16(8):19184-94. PubMed ID: 26287174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viral proteinases--possible targets of antiviral drugs.
    Maliar T; Baláz S; Tandlich R; Sturdík E
    Acta Virol; 2002; 46(3):131-40. PubMed ID: 12580374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HIV protease inhibitors block parasite signal peptide peptidases and prevent growth of Babesia microti parasites in erythrocytes.
    Schwake C; Baldwin MR; Bachovchin W; Hegde S; Schiemer J; Okure C; Levin AE; Vannier E; Hanada T; Chishti AH
    Biochem Biophys Res Commun; 2019 Sep; 517(1):125-131. PubMed ID: 31311649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.