These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16479503)
1. Tissue morphogenesis: a surface buckling mechanism. Volokh KY Int J Dev Biol; 2006; 50(2-3):359-65. PubMed ID: 16479503 [TBL] [Abstract][Full Text] [Related]
2. Stresses in growing soft tissues. Volokh KY Acta Biomater; 2006 Sep; 2(5):493-504. PubMed ID: 16793355 [TBL] [Abstract][Full Text] [Related]
3. A simple phenomenological theory of tissue growth. Volokh KY Mech Chem Biosyst; 2004 Jun; 1(2):147-60. PubMed ID: 16783940 [TBL] [Abstract][Full Text] [Related]
4. The role of chemical dynamics in plant morphogenesis(1). Holloway DM Biochem Soc Trans; 2010 Apr; 38(2):645-50. PubMed ID: 20298237 [TBL] [Abstract][Full Text] [Related]
5. Pattern formation in reaction-diffusion models with nonuniform domain growth. Crampin EJ; Hackborn WW; Maini PK Bull Math Biol; 2002 Jul; 64(4):747-69. PubMed ID: 12216419 [TBL] [Abstract][Full Text] [Related]
7. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Dumais J; Shaw SL; Steele CR; Long SR; Ray PM Int J Dev Biol; 2006; 50(2-3):209-22. PubMed ID: 16479489 [TBL] [Abstract][Full Text] [Related]
8. Interactions between pattern formation and domain growth. Neville AA; Matthews PC; Byrne HM Bull Math Biol; 2006 Nov; 68(8):1975-2003. PubMed ID: 17086491 [TBL] [Abstract][Full Text] [Related]
9. Mathematical framework for modeling tissue growth. Volokh KY Biorheology; 2004; 41(3-4):263-9. PubMed ID: 15299259 [TBL] [Abstract][Full Text] [Related]
10. A mechanics model of microtubule buckling in living cells. Li T J Biomech; 2008; 41(8):1722-9. PubMed ID: 18433758 [TBL] [Abstract][Full Text] [Related]
12. Control of chemical pattern formation by a clock-and-wavefront type mechanism. Kaern M; Míguez DG; Muñuzuri AP; Menzinger M Biophys Chem; 2004 Aug; 110(3):231-8. PubMed ID: 15228959 [TBL] [Abstract][Full Text] [Related]
13. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays. Seirin Lee S; Gaffney EA; Baker RE Bull Math Biol; 2011 Nov; 73(11):2527-51. PubMed ID: 21347815 [TBL] [Abstract][Full Text] [Related]
14. Prediction of femoral head collapse in osteonecrosis. Volokh KY; Yoshida H; Leali A; Fetto JF; Chao EY J Biomech Eng; 2006 Jun; 128(3):467-70. PubMed ID: 16706598 [TBL] [Abstract][Full Text] [Related]
15. Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. Urdy S; Goudemand N; Bucher H; Chirat R J Exp Zool B Mol Dev Evol; 2010 Jun; 314(4):280-302. PubMed ID: 20095030 [TBL] [Abstract][Full Text] [Related]
16. On the anisotropy and inhomogeneity of permeability in articular cartilage. Federico S; Herzog W Biomech Model Mechanobiol; 2008 Oct; 7(5):367-78. PubMed ID: 17619089 [TBL] [Abstract][Full Text] [Related]
17. A fibre reorientation model for orthotropic multiplicative growth. Configurational driving stresses, kinematics-based reorientation, and algorithmic aspects. Menzel A Biomech Model Mechanobiol; 2007 Sep; 6(5):303-20. PubMed ID: 17149642 [TBL] [Abstract][Full Text] [Related]
18. Labyrinthine versus straight-striped patterns generated by two-dimensional Turing systems. Shoji H; Iwasa Y J Theor Biol; 2005 Nov; 237(1):104-16. PubMed ID: 15936775 [TBL] [Abstract][Full Text] [Related]
19. Collagen orientation in periosteum and perichondrium is aligned with preferential directions of tissue growth. Foolen J; van Donkelaar C; Nowlan N; Murphy P; Huiskes R; Ito K J Orthop Res; 2008 Sep; 26(9):1263-8. PubMed ID: 18404654 [TBL] [Abstract][Full Text] [Related]
20. Surface instability of sheared soft tissues. Destrade M; Gilchrist MD; Prikazchikov DA; Saccomandi G J Biomech Eng; 2008 Dec; 130(6):061007. PubMed ID: 19045536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]