BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16479579)

  • 1. Approaches to defining the ancestral eukaryotic protein complexome.
    Ceulemans H; Beke L; Bollen M
    Bioessays; 2006 Mar; 28(3):316-24. PubMed ID: 16479579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I).
    Gabaldón T; Rainey D; Huynen MA
    J Mol Biol; 2005 May; 348(4):857-70. PubMed ID: 15843018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal protein-sequence block structure suggests complex prokaryotic evolution with implications for the origin of eukaryotes.
    Vishwanath P; Favaretto P; Hartman H; Mohr SC; Smith TF
    Mol Phylogenet Evol; 2004 Dec; 33(3):615-25. PubMed ID: 15522791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss.
    Malik SB; Ramesh MA; Hulstrand AM; Logsdon JM
    Mol Biol Evol; 2007 Dec; 24(12):2827-41. PubMed ID: 17921483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome duplication and gene-family evolution: the case of three OXPHOS gene families.
    De Grassi A; Lanave C; Saccone C
    Gene; 2008 Sep; 421(1-2):1-6. PubMed ID: 18573316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes.
    Desmond E; Brochier-Armanet C; Forterre P; Gribaldo S
    Res Microbiol; 2011 Jan; 162(1):53-70. PubMed ID: 21034815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns and processes in the evolution of the eukaryotic endomembrane system.
    Elias M
    Mol Membr Biol; 2010 Nov; 27(8):469-89. PubMed ID: 21067450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins.
    Koumandou VL; Dacks JB; Coulson RM; Field MC
    BMC Evol Biol; 2007 Feb; 7():29. PubMed ID: 17319956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of the new eukaryotic systematics for parasitologists.
    Dacks JB; Walker G; Field MC
    Parasitol Int; 2008 Jun; 57(2):97-104. PubMed ID: 18180199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RJL family of small GTPases is an ancient eukaryotic invention probably functionally associated with the flagellar apparatus.
    Elias M; Archibald JM
    Gene; 2009 Aug; 442(1-2):63-72. PubMed ID: 19393304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origins of modern proteomes.
    Kurland CG; Canbäck B; Berg OG
    Biochimie; 2007 Dec; 89(12):1454-63. PubMed ID: 17949885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs.
    Dong JH; Wen JF; Tian HF
    Gene; 2007 Jul; 396(1):116-24. PubMed ID: 17449198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of conserved protein complexes based on a model of protein network evolution.
    Hirsh E; Sharan R
    Bioinformatics; 2007 Jan; 23(2):e170-6. PubMed ID: 17237088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A minimal estimate for the gene content of the last universal common ancestor--exobiology from a terrestrial perspective.
    Ouzounis CA; Kunin V; Darzentas N; Goldovsky L
    Res Microbiol; 2006; 157(1):57-68. PubMed ID: 16431085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage.
    Leung KF; Dacks JB; Field MC
    Traffic; 2008 Sep; 9(10):1698-716. PubMed ID: 18637903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic profiling of protein interaction networks in eukaryotic transcription factors reveals focal proteins being ancestral to hubs.
    Amoutzias GD; Weiner J; Bornberg-Bauer E
    Gene; 2005 Mar; 347(2):247-53. PubMed ID: 15777629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes.
    Derelle R; Lopez P; Le Guyader H; Manuel M
    Evol Dev; 2007; 9(3):212-9. PubMed ID: 17501745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins.
    Veron AS; Kaufmann K; Bornberg-Bauer E
    Mol Biol Evol; 2007 Mar; 24(3):670-8. PubMed ID: 17175526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.