These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1648015)

  • 1. The hypoxic stress on erythrocytes associated with superoxide formation.
    Rifkind JM; Zhang L; Levy A; Manoharan PT
    Free Radic Res Commun; 1991; 12-13 Pt 2():645-52. PubMed ID: 1648015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of superoxide from hemoglobin-bound oxygen under hypoxic conditions.
    Balagopalakrishna C; Manoharan PT; Abugo OO; Rifkind JM
    Biochemistry; 1996 May; 35(20):6393-8. PubMed ID: 8639585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of hemoglobin and the enhancement produced by nitroblue tetrazolium.
    Abugo OO; Rifkind JM
    J Biol Chem; 1994 Oct; 269(40):24845-53. PubMed ID: 7929164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of low density lipoproteins by erythrocytes and hemoglobin under hypoxic conditions.
    Balagopalakrishna C; Nirmala R; Rifkind JM; Chatterjee S
    Adv Exp Med Biol; 1997; 411():337-45. PubMed ID: 9269446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical.
    Winterbourn CC; Stern A
    J Clin Invest; 1987 Nov; 80(5):1486-91. PubMed ID: 2824562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-induced generation of superoxide in human red cell membrane.
    Kumar KS; Rowse C; Hochstein P
    Biochem Biophys Res Commun; 1978 Jul; 83(2):587-92. PubMed ID: 212059
    [No Abstract]   [Full Text] [Related]  

  • 7. Potential Modulation of Vascular Function by Nitric Oxide and Reactive Oxygen Species Released From Erythrocytes.
    Rifkind JM; Mohanty JG; Nagababu E; Salgado MT; Cao Z
    Front Physiol; 2018; 9():690. PubMed ID: 29930515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-dependent generation of superoxide from human erythrocytes.
    Bynoe LA; Gottsch JD; Pou S; Rosen GM
    Photochem Photobiol; 1992 Sep; 56(3):353-6. PubMed ID: 1332088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of production of superoxide radical by reaction mixtures containing NADH, phenazine methosulfate, and nitroblue tetrazolium.
    Picker SD; Fridovich I
    Arch Biochem Biophys; 1984 Jan; 228(1):155-8. PubMed ID: 6320732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia-reoxygenation.
    Ciccoli L; Rossi V; Leoncini S; Signorini C; Blanco-Garcia J; Aldinucci C; Buonocore G; Comporti M
    Biochim Biophys Acta; 2004 Jun; 1672(3):203-13. PubMed ID: 15182940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Changes in superoxide dismutase activity in the presence of electron donors and acceptors].
    Marinov BS; Obidin AB; Guliaeva NV
    Biokhimiia; 1987 May; 52(5):846-9. PubMed ID: 3036258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide production from nonenzymatically glycated protein.
    Sakurai T; Tsuchiya S
    FEBS Lett; 1988 Aug; 236(2):406-10. PubMed ID: 2842191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ceruloplasmin: an acute phase reactant that scavenges oxygen-derived free radicals.
    Goldstein IM; Kaplan HB; Edelson HS; Weissmann G
    Ann N Y Acad Sci; 1982; 389():368-79. PubMed ID: 6284006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of erythrocyte superoxide dismutase change during human senescence.
    Stevens C; Goldblatt MJ; Freedman JC
    Mech Ageing Dev; 1975; 4(5-6):415-21. PubMed ID: 1228339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reduction of nitroblue tetrazolium by red blood cells: a measure of Red Cell membrane antioxidant capacity and hemoglobin-membrane binding sites.
    Demehin AA; Abugo OO; Rifkind JM
    Free Radic Res; 2001 Jun; 34(6):605-20. PubMed ID: 11697036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of superoxide and ascorbyl radicals in the circulation of animals under oxidative stress.
    Koyama K; Takatsuki K; Inoue M
    Arch Biochem Biophys; 1994 Mar; 309(2):323-8. PubMed ID: 8135544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. I. Chemical reactions involved in the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):404-11. PubMed ID: 8643079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemoglobin redox reactions and oxidative stress.
    Rifkind JM; Nagababu E; Ramasamy S; Ravi LB
    Redox Rep; 2003; 8(5):234-7. PubMed ID: 14962355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Generation of superoxide anion by the reaction of bleomycin-Cu (II) with cysteine].
    Takahashi K; Takita T; Umezawa H
    Jpn J Antibiot; 1987 Apr; 40(4):735-8. PubMed ID: 2441083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron spin resonance evidence of the generation of superoxide anion, hydroxyl radical and singlet oxygen during the photohemolysis of human erythrocytes with bacteriochlorin a.
    Hoebeke M; Schuitmaker HJ; Jannink LE; Dubbelman TM; Jakobs A; Van de Vorst A
    Photochem Photobiol; 1997 Oct; 66(4):502-8. PubMed ID: 9337622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.