These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16480214)

  • 1. Picosecond pump-probe measurement of bandgap changes in SiO2/TiO2 one-dimensional photonic bandgap structures.
    Hwang J; Kim MJ; Wu JW; Lee SM; Rhee BK
    Opt Lett; 2006 Feb; 31(3):377-9. PubMed ID: 16480214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal.
    Hwang J; Ha NY; Chang HJ; Park B; Wu JW
    Opt Lett; 2004 Nov; 29(22):2644-6. PubMed ID: 15552672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-optical tunable photonic bandgap microcavities with a femtosecond time response.
    Hu X; Jiang P; Yang H; Gong Q
    Opt Lett; 2006 Sep; 31(18):2777-9. PubMed ID: 16936889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of optical Kerr nonlinearity of a photonic bandgap structure by Z-scan measurement.
    Hwang J; Wu JW
    Opt Lett; 2005 Apr; 30(8):875-7. PubMed ID: 15865384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical parametric amplification in one-dimensional photonic bandgap structures.
    Wicharn S; Buranasiri P; Ruttanapun C; Jindajitawat P
    Appl Opt; 2013 Sep; 52(25):6090-9. PubMed ID: 24085064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bandgap widening of titania through semiconductor support interactions.
    Gärtner M; Dremov V; Müller P; Kisch H
    Chemphyschem; 2005 Apr; 6(4):714-8. PubMed ID: 15881588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The study on DRS and Raman spectroscopy of surface modified TiO2/SiO2].
    Sang LX; Zhong SH; Ma CF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):720-4. PubMed ID: 17608183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative fiber Bragg grating filter based on a graphene photonic crystal microcavity.
    Bozorgzadeh F; Ahmadi D; Sahrai M
    Appl Opt; 2020 Jan; 59(1):84-91. PubMed ID: 32225294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of chi((2)) cascading processes in one-dimensional photonic bandgap structures.
    D'Aguanno G; Centini M; Sibilia C; Bertolotti M; Scalora M; Bloemer MJ; Bowden CM
    Opt Lett; 1999 Dec; 24(23):1663-5. PubMed ID: 18079895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast tunable filter in two-dimensional organic photonic crystal.
    Hu X; Gong Q; Liu Y; Cheng B; Zhang D
    Opt Lett; 2006 Feb; 31(3):371-3. PubMed ID: 16480212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically tunable superprism effect in nonlinear photonic crystals.
    Panoiu NC; Bahl M; Osgood RM
    Opt Lett; 2003 Dec; 28(24):2503-5. PubMed ID: 14690128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doped photonic bandgap fibers for short-wavelength nonlinear devices.
    Laegsgaard J; Bjarklev A
    Opt Lett; 2003 May; 28(10):783-5. PubMed ID: 12779145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. All-optical dynamic photonic bandgap control in an all-solid double-clad tellurite photonic bandgap fiber.
    Cheng T; Tanaka S; Tuan TH; Suzuki T; Ohishi Y
    Opt Lett; 2017 Jun; 42(12):2354-2357. PubMed ID: 28614308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of surface plasmon polaritons near the photonic-bandgap edge for interphotonic band switching devices.
    Onuki T; Ohtera Y; Tokizaki T
    J Microsc; 2008 Mar; 229(Pt 3):447-51. PubMed ID: 18331493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of one-dimensional photonic crystals based on the incident angle domain.
    Huang B; Gu P; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046601. PubMed ID: 14683059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear sensitivity enhancement with one-dimensional photonic bandgap microcavity arrays.
    Blair S
    Opt Lett; 2002 Apr; 27(8):613-5. PubMed ID: 18007879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.
    Euser TG; Harding PJ; Vos WL
    Rev Sci Instrum; 2009 Jul; 80(7):073104. PubMed ID: 19655940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cross-waveguide optical switching with a nonlinear photonic band-gap structure.
    Scholz S; Hess O; Ruhle R
    Opt Express; 1998 Jul; 3(1):28-34. PubMed ID: 19381234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Control of the Optical Bandgap in One-Dimensional Photonic Crystals.
    Stinson VP; Shuchi N; McLamb M; Boreman GD; Hofmann T
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.