These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16480214)

  • 21. Design of thin-film photonic crystals with complete photonic bandgap.
    Park SY; Kim H; Song BS
    Opt Express; 2018 Oct; 26(22):29521-29526. PubMed ID: 30470114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths.
    Noda S; Tomoda K; Yamamoto N; Chutinan A
    Science; 2000 Jul; 289(5479):604-6. PubMed ID: 10915619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deformation-induced bandgap tuning of 2D silicon-based photonic crystals.
    Jun S; Cho YS
    Opt Express; 2003 Oct; 11(21):2769-74. PubMed ID: 19471392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical properties and bandgap evolution of ALD HfSiOx films.
    Yang W; Fronk M; Geng Y; Chen L; Sun QQ; Gordan OD; Zhou P; Zahn DR; Zhang DW
    Nanoscale Res Lett; 2015; 10():32. PubMed ID: 25852329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure.
    Ma G; Tang SH; Shen J; Zhang Z; Hua Z
    Opt Lett; 2004 Aug; 29(15):1769-71. PubMed ID: 15352364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of nonlinear effects at the degenerate band edge of two-dimensional photonic crystals.
    Astic M; Delaye P; Frey R; Roosen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056608. PubMed ID: 19518583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Narrow-band transmission filter based on 1D-PCs with a defect layer.
    Jafari R; Sahrai M; Bozorgzadeh F; Mohammadi-Asl R; Ahmadi D; Movahednia M
    Appl Opt; 2022 Sep; 61(25):7463-7468. PubMed ID: 36256050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers.
    Jana D; Porwal S; Sharma TK; Kumar S; Oak SM
    Rev Sci Instrum; 2014 Apr; 85(4):043909. PubMed ID: 24784628
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals.
    Yang Z; Zhu K; Song Z; Zhou D; Yin Z; Qiu J
    Appl Opt; 2011 Jan; 50(3):287-90. PubMed ID: 21263723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical bistability and cutoff solitons in photonic bandgap fibers.
    Soljacić M; Lidorikis E; Ibanescu M; Johnson S; Joannopoulos J; Fink Y
    Opt Express; 2004 Apr; 12(8):1518-27. PubMed ID: 19474977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs.
    Liu Y; Qin F; Meng ZM; Zhou F; Mao QH; Li ZY
    Opt Express; 2011 Jan; 19(3):1945-53. PubMed ID: 21369010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear interaction between two different photonic bandgaps of a hybrid photonic crystal fiber.
    Cerqueira S A; Cordeiro CM; Biancalana F; Roberts PJ; Hernandez-Figueroa HE; Cruz CH
    Opt Lett; 2008 Sep; 33(18):2080-2. PubMed ID: 18794937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and realization of antireflection coatings for the visible and the infrared based on mesoporous SiO
    Zhao W; Jia H; Wang Y; Wang Q; Wu H; Wang B
    Appl Opt; 2019 Mar; 58(9):2385-2392. PubMed ID: 31044940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Air and dielectric bands photonic crystal microringresonator for refractive index sensing.
    Urbonas D; Balčytis A; Vaškevičius K; Gabalis M; Petruškevičius R
    Opt Lett; 2016 Aug; 41(15):3655-8. PubMed ID: 27472642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm.
    Shirakawa A; Maruyama H; Ueda K; Olausson CB; Lyngsø JK; Broeng J
    Opt Express; 2009 Jan; 17(2):447-54. PubMed ID: 19158857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional photonic-crystal vertical-cavity array for nonlinear optical image processing.
    Sievenpiper DF; Lam CF; Yablonovitch E
    Appl Opt; 1998 Apr; 37(11):2074-8. PubMed ID: 18273127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture.
    Wang A; Liu W; Tang J; Chen SL; Dong P
    Opt Lett; 2014 Apr; 39(8):2386-9. PubMed ID: 24978999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber.
    Cheng T; Liao M; Gao W; Duan Z; Suzuki T; Ohishi Y
    Opt Express; 2012 Dec; 20(27):28846-54. PubMed ID: 23263125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.