These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16480309)

  • 1. Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants.
    Kelly CP; Cramer CJ; Truhlar DG
    J Phys Chem A; 2006 Feb; 110(7):2493-9. PubMed ID: 16480309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations.
    Afaneh AT; Schreckenbach G; Wang F
    J Phys Chem B; 2014 Sep; 118(38):11271-83. PubMed ID: 25076413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution.
    Tang E; Di Tommaso D; de Leeuw NH
    Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational spectroscopy of microhydrated conjugate base anions.
    Asmis KR; Neumark DM
    Acc Chem Res; 2012 Jan; 45(1):43-52. PubMed ID: 21675714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvation Thermodynamics of Solutes in Water and Ionic Liquids Using the Multiscale Solvation-Layer Interface Condition Continuum Model.
    Rahimi AM; Jamali S; Bardhan JP; Lustig SR
    J Chem Theory Comput; 2022 Sep; 18(9):5539-5558. PubMed ID: 36001344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic stability of hydrogen-bonded systems in polar and nonpolar environments.
    Pasalić H; Aquino AJ; Tunega D; Haberhauer G; Gerzabek MH; Georg HC; Moraes TF; Coutinho K; Canuto S; Lischka H
    J Comput Chem; 2010 Jul; 31(10):2046-55. PubMed ID: 20127744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.
    Riccardi D; Guo HB; Parks JM; Gu B; Liang L; Smith JC
    J Chem Theory Comput; 2013 Jan; 9(1):555-69. PubMed ID: 26589054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the accurate calculation of pKa values in water and acetonitrile.
    Muckerman JT; Skone JH; Ning M; Wasada-Tsutsui Y
    Biochim Biophys Acta; 2013; 1827(8-9):882-91. PubMed ID: 23567870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free Energies of Catalytic Species Adsorbed to Pt(111) Surfaces under Liquid Solvent Calculated Using Classical and Quantum Approaches.
    Zhang X; DeFever RS; Sarupria S; Getman RB
    J Chem Inf Model; 2019 May; 59(5):2190-2198. PubMed ID: 30821458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order Fuzzy-Border continuum solvation model.
    Sharma I; Kaminski GA
    J Comput Chem; 2012 Nov; 33(30):2388-99. PubMed ID: 22815192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion Recognition in Aqueous Media by Cyclopeptides and Other Synthetic Receptors.
    Kubik S
    Acc Chem Res; 2017 Nov; 50(11):2870-2878. PubMed ID: 29125287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized parameters for continuum solvation calculations with carbohydrates.
    Green DF
    J Phys Chem B; 2008 Apr; 112(16):5238-49. PubMed ID: 18386862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization.
    Zhang H; Tan T; van der Spoel D
    J Chem Theory Comput; 2015 Nov; 11(11):5103-13. PubMed ID: 26574308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-exclusion and liquid-structure forces in implicit solvation.
    Hassan SA; Steinbach PJ
    J Phys Chem B; 2011 Dec; 115(49):14668-82. PubMed ID: 22007697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reliable and efficient first principles-based method for predicting pK(a) values. III. Adding explicit water molecules: can the theoretical slope be reproduced and pK(a) values predicted more accurately?
    Zhang S
    J Comput Chem; 2012 Feb; 33(5):517-26. PubMed ID: 22173939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.