These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 16480683)
1. Characterization of the reaction products of cytochrome c with glutathione by mass spectrometry. Deng H Biochem Biophys Res Commun; 2006 Mar; 342(1):73-80. PubMed ID: 16480683 [TBL] [Abstract][Full Text] [Related]
2. Alkylation of cytochrome c by (glutathion-S-yl)-1,4-benzoquinone and iodoacetamide demonstrates compound-dependent site specificity. Person MD; Mason DE; Liebler DC; Monks TJ; Lau SS Chem Res Toxicol; 2005 Jan; 18(1):41-50. PubMed ID: 15651848 [TBL] [Abstract][Full Text] [Related]
3. Marked difference in cytochrome c oxidation mediated by HO(*) and/or O(2)(*-) free radicals in vitro. Thariat J; Collin F; Marchetti C; Ahmed-Adrar NS; Vitrac H; Jore D; Gardes-Albert M Biochimie; 2008 Oct; 90(10):1442-51. PubMed ID: 18555026 [TBL] [Abstract][Full Text] [Related]
4. Hydroxyl radical oxidation of cytochrome c by aerobic radiolysis. Nukuna BN; Sun G; Anderson VE Free Radic Biol Med; 2004 Oct; 37(8):1203-13. PubMed ID: 15451060 [TBL] [Abstract][Full Text] [Related]
5. Determination of binding sites in carboplatin-bound cytochrome c using electrospray ionization mass spectrometry and tandem mass spectrometry. Yang G; Miao R; Jin C; Mei Y; Tang H; Hong J; Guo Z; Zhu L J Mass Spectrom; 2005 Aug; 40(8):1005-16. PubMed ID: 15934026 [TBL] [Abstract][Full Text] [Related]
6. Voltammetric investigation of cytochrome c on gold coated with a self-assembled glutathione monolayer. Wu Y; Hu S Bioelectrochemistry; 2006 Jan; 68(1):105-12. PubMed ID: 16043421 [TBL] [Abstract][Full Text] [Related]
7. Time course and site(s) of cytochrome c tyrosine nitration by peroxynitrite. Batthyány C; Souza JM; Durán R; Cassina A; Cerveñansky C; Radi R Biochemistry; 2005 Jun; 44(22):8038-46. PubMed ID: 15924423 [TBL] [Abstract][Full Text] [Related]
8. Identification of non-covalent structure in apocytochrome c by hydrogen exchange and mass spectrometry. Raza AS; Dharmasiri K; Smith DL J Mass Spectrom; 2000 May; 35(5):612-7. PubMed ID: 10800050 [TBL] [Abstract][Full Text] [Related]
9. Using mass spectrometry to probe the subtle differences in conformations of several cytochromes c in aqueous and methanol solutions. Wang YF; Ho MY; Ho YP J Mass Spectrom; 2004 Dec; 39(12):1523-30. PubMed ID: 15578744 [TBL] [Abstract][Full Text] [Related]
10. Novel biomarkers of protein oxidation sites and degrees using horse cytochrome c as the target by mass spectrometry. Zong W; Liu R; Guo C; Sun F Spectrochim Acta A Mol Biomol Spectrosc; 2011 May; 78(5):1581-6. PubMed ID: 21377407 [TBL] [Abstract][Full Text] [Related]
11. Kinetics and mechanism of reduction of ferricytochrome c by glutathione and L-cysteine: a comparative study. Subudhi U; Chainy GB; Mohanty P Indian J Biochem Biophys; 2006 Feb; 43(1):37-40. PubMed ID: 16955750 [TBL] [Abstract][Full Text] [Related]
12. Studies of interaction between insulin and glutathione using electrospray ionization mass spectrometry. Du Y; Zhang N; Cui M; Liu Z; Liu S Rapid Commun Mass Spectrom; 2012 Jul; 26(13):1519-26. PubMed ID: 22638968 [TBL] [Abstract][Full Text] [Related]
13. Structure of a trypanosomatid mitochondrial cytochrome c with heme attached via only one thioether bond and implications for the substrate recognition requirements of heme lyase. Fülöp V; Sam KA; Ferguson SJ; Ginger ML; Allen JW FEBS J; 2009 May; 276(10):2822-32. PubMed ID: 19459937 [TBL] [Abstract][Full Text] [Related]
14. Singlet oxygen generation from the decomposition of alpha-linolenic acid hydroperoxide by cytochrome c and lactoperoxidase. Sun S; Bao Z; Ma H; Zhang D; Zheng X Biochemistry; 2007 Jun; 46(22):6668-73. PubMed ID: 17497889 [TBL] [Abstract][Full Text] [Related]
15. Determination of the orientation of adsorbed cytochrome C on carboxyalkanethiol self-assembled monolayers by in situ differential modification. Xu J; Bowden EF J Am Chem Soc; 2006 May; 128(21):6813-22. PubMed ID: 16719461 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the enzymatic and nonenzymatic reaction of 13-oxooctadecadienoic acid with glutathione. Blackburn ML; Ketterer B; Meyer DJ; Juett AM; Bull AW Chem Res Toxicol; 1997 Dec; 10(12):1364-71. PubMed ID: 9437527 [TBL] [Abstract][Full Text] [Related]
17. Native electron capture dissociation for the structural characterization of noncovalent interactions in native cytochrome C. Breuker K; McLafferty FW Angew Chem Int Ed Engl; 2003 Oct; 42(40):4900-4. PubMed ID: 14579433 [No Abstract] [Full Text] [Related]
18. Site-specific binding of quinones to proteins through thiol addition and addition-elimination reactions. Li WW; Heinze J; Haehnel W J Am Chem Soc; 2005 May; 127(17):6140-1. PubMed ID: 15853297 [TBL] [Abstract][Full Text] [Related]
19. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry. Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668 [TBL] [Abstract][Full Text] [Related]
20. Markov-chain-based heteroscedastic regression model for the analysis of high-resolution enzymatically 18O-labeled mass spectra. Zhu Q; Valkenborg D; Burzykowski T J Proteome Res; 2010 May; 9(5):2669-77. PubMed ID: 20329753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]