These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 16480728)
1. High-efficiency liquid chromatography on conventional columns and instrumentation by using temperature as a variable I. Experiments with 25 cm x 4.6 mm I.D., 5 microm ODS columns. Lestremau F; Cooper A; Szucs R; David F; Sandra P J Chromatogr A; 2006 Mar; 1109(2):191-6. PubMed ID: 16480728 [TBL] [Abstract][Full Text] [Related]
2. High peak capacity separation of peptides through the serial connection of LC shell-packed columns. Donato P; Dugo P; Cacciola F; Dugo G; Mondello L J Sep Sci; 2009 Apr; 32(8):1129-36. PubMed ID: 19301327 [TBL] [Abstract][Full Text] [Related]
3. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part I: isocratic separation. Guillarme D; Nguyen DT; Rudaz S; Veuthey JL Eur J Pharm Biopharm; 2007 Jun; 66(3):475-82. PubMed ID: 17267188 [TBL] [Abstract][Full Text] [Related]
4. Ultrahigh pressure liquid chromatography using elevated temperature. Xiang Y; Liu Y; Lee ML J Chromatogr A; 2006 Feb; 1104(1-2):198-202. PubMed ID: 16376355 [TBL] [Abstract][Full Text] [Related]
5. Method transfer for fast liquid chromatography in pharmaceutical analysis: application to short columns packed with small particle. Part II: gradient experiments. Guillarme D; Nguyen DT; Rudaz S; Veuthey JL Eur J Pharm Biopharm; 2008 Feb; 68(2):430-40. PubMed ID: 17703929 [TBL] [Abstract][Full Text] [Related]
6. Studies on azaspiracid biotoxins. I. Ultrafast high-resolution liquid chromatography/mass spectrometry separations using monolithic columns. Volmer DA; Brombacher S; Whitehead B Rapid Commun Mass Spectrom; 2002; 16(24):2298-305. PubMed ID: 12478575 [TBL] [Abstract][Full Text] [Related]
7. High efficiency liquid chromatography on conventional columns and instrumentation by using temperature as a variable. Kinetic plots and experimental verification. Lestremau F; de Villiers A; Lynen F; Cooper A; Szucs R; Sandra P J Chromatogr A; 2007 Jan; 1138(1-2):120-31. PubMed ID: 17097097 [TBL] [Abstract][Full Text] [Related]
8. Characterization of new types of stationary phases for fast liquid chromatographic applications. Fekete S; Fekete J; Ganzler K J Pharm Biomed Anal; 2009 Dec; 50(5):703-9. PubMed ID: 19560301 [TBL] [Abstract][Full Text] [Related]
9. Practical assessment of frictional heating effects and thermostat design on the performance of conventional (3 microm and 5 microm) columns in reversed-phase high-performance liquid chromatography. Fallas MM; Hadley MR; McCalley DV J Chromatogr A; 2009 May; 1216(18):3961-9. PubMed ID: 19339017 [TBL] [Abstract][Full Text] [Related]
10. High-efficiency hydrophilic interaction chromatography by coupling 25 cm x 4.6mm ID x 5 microm silica columns and operation at 80 degrees C. Louw S; Lynen F; Hanna-Brown M; Sandra P J Chromatogr A; 2010 Jan; 1217(4):514-21. PubMed ID: 20015500 [TBL] [Abstract][Full Text] [Related]
11. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties. Gritti F; Guiochon G J Chromatogr A; 2008 Apr; 1187(1-2):165-79. PubMed ID: 18313063 [TBL] [Abstract][Full Text] [Related]
12. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406 [TBL] [Abstract][Full Text] [Related]
13. Development of dual gradient column in liquid chromatography. Oda T; Kitagawa S; Ohtani H J Chromatogr A; 2006 Feb; 1105(1-2):154-8. PubMed ID: 16185701 [TBL] [Abstract][Full Text] [Related]
14. Preparation of low flow-resistant methacrylate-based monolithic stationary phases of different hydrophobicity and the application to rapid reversed-phase liquid chromatographic separation of alkylbenzenes at high flow rate and elevated temperature. Ueki Y; Umemura T; Iwashita Y; Odake T; Haraguchi H; Tsunoda K J Chromatogr A; 2006 Feb; 1106(1-2):106-11. PubMed ID: 16443455 [TBL] [Abstract][Full Text] [Related]
15. High throughput liquid chromatography with sub-2 microm particles at high pressure and high temperature. Nguyen DT; Guillarme D; Heinisch S; Barrioulet MP; Rocca JL; Rudaz S; Veuthey JL J Chromatogr A; 2007 Oct; 1167(1):76-84. PubMed ID: 17765255 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of 1.0 mm i.d. column performances on ultra high pressure liquid chromatography instrumentation. Lestremau F; Wu D; Szücs R J Chromatogr A; 2010 Jul; 1217(30):4925-33. PubMed ID: 20566199 [TBL] [Abstract][Full Text] [Related]
17. High throughput screening of active pharmaceutical ingredients by UPLC. Al-Sayah MA; Rizos P; Antonucci V; Wu N J Sep Sci; 2008 Jul; 31(12):2167-72. PubMed ID: 18563754 [TBL] [Abstract][Full Text] [Related]
18. Experimental evidence of the influence of the surface chemistry of the packing material on the column pressure drop in reverse-phase liquid chromatography. Gritti F; Guiochon G J Chromatogr A; 2006 Dec; 1136(2):192-201. PubMed ID: 17046011 [TBL] [Abstract][Full Text] [Related]
19. Kinetic plot equations for evaluating the real performance of the combined use of high temperature and ultra-high pressure in liquid chromatography. Application to commercial instruments and 2.1 and 1 mm I.D. columns. Heinisch S; Desmet G; Clicq D; Rocca JL J Chromatogr A; 2008 Sep; 1203(2):124-36. PubMed ID: 18675984 [TBL] [Abstract][Full Text] [Related]
20. A practical approach to maximizing peak capacity by using long columns packed with pellicular stationary phases for proteomic research. Wang X; Barber WE; Carr PW J Chromatogr A; 2006 Feb; 1107(1-2):139-51. PubMed ID: 16412451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]