These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 16480735)
1. Pressure induced transition between superhydrophobic states: configuration diagrams and effect of surface feature size. Liu B; Lange FF J Colloid Interface Sci; 2006 Jun; 298(2):899-909. PubMed ID: 16480735 [TBL] [Abstract][Full Text] [Related]
2. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Zheng QS; Yu Y; Zhao ZH Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993 [TBL] [Abstract][Full Text] [Related]
3. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface. Promraksa A; Chuang YC; Chen LJ J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812 [TBL] [Abstract][Full Text] [Related]
4. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
5. Novel method of producing a superhydrophobic surface on Si. Liu B; Lange FF Langmuir; 2010 Mar; 26(5):3637-40. PubMed ID: 19928882 [TBL] [Abstract][Full Text] [Related]
6. Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstacles. Barbieri L; Wagner E; Hoffmann P Langmuir; 2007 Feb; 23(4):1723-34. PubMed ID: 17279650 [TBL] [Abstract][Full Text] [Related]
7. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions. Nosonovsky M; Bhushan B Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794 [TBL] [Abstract][Full Text] [Related]
8. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces. Bahadur V; Garimella SV Langmuir; 2008 Aug; 24(15):8338-45. PubMed ID: 18598067 [TBL] [Abstract][Full Text] [Related]
9. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements. Bahadur V; Garimella SV Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655 [TBL] [Abstract][Full Text] [Related]
12. Effects of geometrical characteristics of surface roughness on droplet wetting. Sheng YJ; Jiang S; Tsao HK J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406 [TBL] [Abstract][Full Text] [Related]
13. How to make the Cassie wetting state stable? Whyman G; Bormashenko E Langmuir; 2011 Jul; 27(13):8171-6. PubMed ID: 21644550 [TBL] [Abstract][Full Text] [Related]
14. Cassie-Wenzel wetting transition in vibrating drops deposited on rough surfaces: is the dynamic Cassie-Wenzel wetting transition a 2D or 1D affair? Bormashenko E; Pogreb R; Whyman G; Erlich M Langmuir; 2007 Jun; 23(12):6501-3. PubMed ID: 17497815 [TBL] [Abstract][Full Text] [Related]
15. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Ran C; Ding G; Liu W; Deng Y; Hou W Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472 [TBL] [Abstract][Full Text] [Related]
16. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface. Promraksa A; Chen LJ J Colloid Interface Sci; 2012 Oct; 384(1):172-81. PubMed ID: 22818957 [TBL] [Abstract][Full Text] [Related]
17. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State. Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812 [TBL] [Abstract][Full Text] [Related]
18. Drop rebound after impact: the role of the receding contact angle. Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086 [TBL] [Abstract][Full Text] [Related]
19. Control over wettability of polyethylene glycol surfaces using capillary lithography. Suh KY; Jon S Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state. Liu T; Sun W; Sun X; Ai H Langmuir; 2010 Sep; 26(18):14835-41. PubMed ID: 20726606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]