These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16480755)

  • 41. Dewatered alum sludge: a potential adsorbent for phosphorus removal.
    Yang Y; Tomlinson D; Kennedy S; Zhao YQ
    Water Sci Technol; 2006; 54(5):207-13. PubMed ID: 17087387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphorus adsorption on natural sediments: modeling and effects of pH and sediment composition.
    Zhou A; Tang H; Wang D
    Water Res; 2005 Apr; 39(7):1245-54. PubMed ID: 15862324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions.
    Wang S; Jin X; Zhao H; Wu F
    J Hazard Mater; 2009 Jan; 161(2-3):1551-9. PubMed ID: 18555597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Phosphorus sorption capacities of the pond sediments in a headstream agricultural watershed].
    Fu Q; Yin CQ; Ma Y
    Huan Jing Ke Xue; 2005 Jul; 26(4):70-6. PubMed ID: 16212171
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of crystallization of settled aluminum hydroxide precipitate on "dissolved Al".
    Yu W; Xu L; Lei K; Gregory J
    Water Res; 2018 Oct; 143():346-354. PubMed ID: 29986244
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of humic acid on recoverability and fractal structure of alum-kaolin flocs.
    Zhong R; Zhang X; Xiao F; Li X
    J Environ Sci (China); 2011; 23(5):731-7. PubMed ID: 21790043
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physical and ecological controls on freshwater floc trace metal dynamics.
    Plach JM; Elliott AV; Droppo IG; Warren LA
    Environ Sci Technol; 2011 Mar; 45(6):2157-64. PubMed ID: 21322631
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Sorption and desorption characteristics of different structures of organic phosphorus onto aluminum (oxyhydr) oxides].
    Liu F; Zhang YY; Yan YP; Liu F; Tan WF; Liu MM; Feng XH
    Huan Jing Ke Xue; 2013 Nov; 34(11):4482-9. PubMed ID: 24455963
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge.
    Babatunde AO; Zhao YQ
    J Hazard Mater; 2010 Dec; 184(1-3):746-752. PubMed ID: 20846787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An alum-based water treatment residual can reduce extractable phosphorus concentrations in three phosphorus-enriched coastal plain soils.
    Novak JM; Watts DW
    J Environ Qual; 2005; 34(5):1820-7. PubMed ID: 16151234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China.
    Wang S; Jin X; Pang Y; Zhao H; Zhou X; Wu F
    J Colloid Interface Sci; 2005 Sep; 289(2):339-46. PubMed ID: 16112221
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variability in phosphorus binding by aluminum in alum treated lakes explained by lake morphology and aluminum dose.
    Huser BJ
    Water Res; 2012 Oct; 46(15):4697-704. PubMed ID: 22763294
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite.
    Xie F; Wu F; Liu G; Mu Y; Feng C; Wang H; Giesy JP
    Environ Sci Technol; 2014; 48(1):582-90. PubMed ID: 24328241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dewatering of alumino-humic sludge: impacts of hydroxide.
    Bache DH; Papavasilopoulos EN
    Water Res; 2003 Aug; 37(14):3289-98. PubMed ID: 12834721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Impact of regional water chemistry on the phosphorus isothermal adsorption of the sediments in three subsidence waters of the Huainan Mine areas].
    Yi QT; Sun PF; Xie K; Qu XJ; Wang TT
    Huan Jing Ke Xue; 2013 Oct; 34(10):3894-903. PubMed ID: 24364308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical lake restoration products: sediment stability and phosphorus dynamics.
    Egemose S; Reitzel K; Andersen FØ; Flindt MR
    Environ Sci Technol; 2010 Feb; 44(3):985-91. PubMed ID: 20055487
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment.
    Dittrich M; Gabriel O; Rutzen C; Koschel R
    Sci Total Environ; 2011 Mar; 409(8):1504-15. PubMed ID: 21292312
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Phosphate adsorption characteristics on surface sediments of Nansi Lake and its main inflow rivers].
    An WC; Li XM
    Huan Jing Ke Xue; 2008 May; 29(5):1295-302. PubMed ID: 18624196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.