These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 1648079)
1. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Koch AK; Käppeli O; Fiechter A; Reiser J J Bacteriol; 1991 Jul; 173(13):4212-9. PubMed ID: 1648079 [TBL] [Abstract][Full Text] [Related]
2. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Shreve GS; Inguva S; Gunnam S Mol Mar Biol Biotechnol; 1995 Dec; 4(4):331-7. PubMed ID: 8541984 [TBL] [Abstract][Full Text] [Related]
3. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. Beal R; Betts WB J Appl Microbiol; 2000 Jul; 89(1):158-68. PubMed ID: 10945793 [TBL] [Abstract][Full Text] [Related]
4. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. Patel RM; Desai AJ J Basic Microbiol; 1997; 37(4):281-6. PubMed ID: 9323868 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Ochsner UA; Koch AK; Fiechter A; Reiser J J Bacteriol; 1994 Apr; 176(7):2044-54. PubMed ID: 8144472 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Hori K; Marsudi S; Unno H Biotechnol Bioeng; 2002 Jun; 78(6):699-707. PubMed ID: 11992535 [TBL] [Abstract][Full Text] [Related]
7. Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Holden PA; LaMontagne MG; Bruce AK; Miller WG; Lindow SE Appl Environ Microbiol; 2002 May; 68(5):2509-18. PubMed ID: 11976128 [TBL] [Abstract][Full Text] [Related]
8. Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Noordman WH; Janssen DB Appl Environ Microbiol; 2002 Sep; 68(9):4502-8. PubMed ID: 12200306 [TBL] [Abstract][Full Text] [Related]
9. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. Noordman WH; Wachter JH; de Boer GJ; Janssen DB J Biotechnol; 2002 Mar; 94(2):195-212. PubMed ID: 11796172 [TBL] [Abstract][Full Text] [Related]
10. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798 [TBL] [Abstract][Full Text] [Related]
11. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
12. Production of biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant. Raza ZA; Khan MS; Khalid ZM; Rehman A Z Naturforsch C J Biosci; 2006; 61(1-2):87-94. PubMed ID: 16610223 [TBL] [Abstract][Full Text] [Related]
13. Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Christova N; Tuleva B; Lalchev Z; Jordanova A; Jordanov B Z Naturforsch C J Biosci; 2004; 59(1-2):70-4. PubMed ID: 15018056 [TBL] [Abstract][Full Text] [Related]
14. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related]
15. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Herman DC; Zhang Y; Miller RM Appl Environ Microbiol; 1997 Sep; 63(9):3622-7. PubMed ID: 9293014 [TBL] [Abstract][Full Text] [Related]
16. Rhamnose lipids--biosynthesis, microbial production and application potential. Lang S; Wullbrandt D Appl Microbiol Biotechnol; 1999 Jan; 51(1):22-32. PubMed ID: 10077819 [TBL] [Abstract][Full Text] [Related]
17. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Silva SN; Farias CB; Rufino RD; Luna JM; Sarubbo LA Colloids Surf B Biointerfaces; 2010 Aug; 79(1):174-83. PubMed ID: 20417068 [TBL] [Abstract][Full Text] [Related]
18. Enhanced rhamnolipids production in Pseudomonas aeruginosa SG by selectively blocking metabolic bypasses of glycosyl and fatty acid precursors. Lei L; Zhao F; Han S; Zhang Y Biotechnol Lett; 2020 Jun; 42(6):997-1002. PubMed ID: 32060764 [TBL] [Abstract][Full Text] [Related]
19. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1. Santa Anna LM; Sebastian GV; Pereira N; Alves TL; Menezes EP; Freire DM Appl Biochem Biotechnol; 2001; 91-93():459-67. PubMed ID: 11963874 [TBL] [Abstract][Full Text] [Related]
20. Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. Arino S; Marchal R; Vandecasteele JP J Appl Microbiol; 1998 May; 84(5):769-76. PubMed ID: 9674130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]