These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 1648079)
21. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757 [TBL] [Abstract][Full Text] [Related]
22. Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa. Iqbal S; Khalid ZM; Malik KA Lett Appl Microbiol; 1995 Sep; 21(3):176-9. PubMed ID: 7576503 [TBL] [Abstract][Full Text] [Related]
23. Extracellular particles of polymeric material formed in n-hexadecane fermentation by Pseudomonas aeruginosa. Wu J; Ju LK J Biotechnol; 1997 Jan; 59(3):193-202. PubMed ID: 9519480 [TBL] [Abstract][Full Text] [Related]
24. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Raza ZA; Khan MS; Khalid ZM; Rehman A Biotechnol Lett; 2006 Oct; 28(20):1623-31. PubMed ID: 16955358 [TBL] [Abstract][Full Text] [Related]
25. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater. Vasileva-Tonkova E; Sotirova A; Galabova D Curr Microbiol; 2011 Feb; 62(2):427-33. PubMed ID: 20680280 [TBL] [Abstract][Full Text] [Related]
26. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
27. Characterization of rhamnolipid production by Burkholderia glumae. Costa SG; Déziel E; Lépine F Lett Appl Microbiol; 2011 Dec; 53(6):620-7. PubMed ID: 21933203 [TBL] [Abstract][Full Text] [Related]
28. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C; Dong W; Li J; Li Y; Huang C; Ma Y Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649 [TBL] [Abstract][Full Text] [Related]
29. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Grosso-Becerra MV; González-Valdez A; Granados-Martínez MJ; Morales E; Servín-González L; Méndez JL; Delgado G; Morales-Espinosa R; Ponce-Soto GY; Cocotl-Yañez M; Soberón-Chávez G Appl Microbiol Biotechnol; 2016 Dec; 100(23):9995-10004. PubMed ID: 27566690 [TBL] [Abstract][Full Text] [Related]
30. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Déziel E; Lépine F; Milot S; Villemur R Microbiology (Reading); 2003 Aug; 149(Pt 8):2005-2013. PubMed ID: 12904540 [TBL] [Abstract][Full Text] [Related]
31. Biosurfactant production by Pseudomonas aeruginosain kefir and fish meal. Kaskatepe B; Yildiz S; Gumustas M; Ozkan SA Braz J Microbiol; 2015; 46(3):855-9. PubMed ID: 26413070 [TBL] [Abstract][Full Text] [Related]
32. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
33. Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction? Liu Y; Zeng G; Zhong H; Wang Z; Liu Z; Cheng M; Liu G; Yang X; Liu S J Hazard Mater; 2017 Jan; 322(Pt B):394-401. PubMed ID: 27773441 [TBL] [Abstract][Full Text] [Related]
34. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
35. Microbial Surfactants: Alternative to Vegetable Oil Surfactants. Gudiña EJ; Rodrigues LR Methods Mol Biol; 2019; 1995():383-393. PubMed ID: 31148140 [TBL] [Abstract][Full Text] [Related]
36. Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils. Raza ZA; Khalid ZM; Banat IM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Nov; 44(13):1367-73. PubMed ID: 20183494 [TBL] [Abstract][Full Text] [Related]
38. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. Bouchez-Naïtali M; Rakatozafy H; Marchal R; Leveau JY; Vandecasteele JP J Appl Microbiol; 1999 Mar; 86(3):421-8. PubMed ID: 10196747 [TBL] [Abstract][Full Text] [Related]
39. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661 [TBL] [Abstract][Full Text] [Related]
40. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells. Bagheri Lotfabad T; Ebadipour N; Roostaazad R; Partovi M; Bahmaei M Colloids Surf B Biointerfaces; 2017 Apr; 152():159-168. PubMed ID: 28110037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]