These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16481029)

  • 21. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.).
    Wang M; Zou J; Duan X; Jiang W; Liu D
    Bioresour Technol; 2007 Jan; 98(1):82-8. PubMed ID: 16426846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils.
    Ali NA; Ater M; Sunahara GI; Robidoux PY
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):363-74. PubMed ID: 15041259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenanthrene and pyrene uptake by arbuscular mycorrhizal maize and their dissipation in soil.
    Wu FY; Yu XZ; Wu SC; Lin XG; Wong MH
    J Hazard Mater; 2011 Mar; 187(1-3):341-7. PubMed ID: 21282002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil.
    Da Mota FF; Gomes EA; Marriel IE; Paiva E; Seldin L
    J Microbiol Biotechnol; 2008 May; 18(5):805-14. PubMed ID: 18633275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions.
    Bi X; Feng X; Yang Y; Li X; Shin GP; Li F; Qiu G; Li G; Liu T; Fu Z
    Environ Pollut; 2009 Mar; 157(3):834-9. PubMed ID: 19100668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower.
    Chiang PN; Wang MK; Chiu CY; Chou SY
    Environ Toxicol; 2006 Oct; 21(5):479-88. PubMed ID: 16944509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil.
    Chaignon V; Quesnoit M; Hinsinger P
    Environ Pollut; 2009 Dec; 157(12):3363-9. PubMed ID: 19608319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants.
    Ruiz E; Rodríguez L; Alonso-Azcárate J
    Chemosphere; 2009 May; 75(8):1035-41. PubMed ID: 19232427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum.
    Rizvi A; Khan MS
    Ecotoxicol Environ Saf; 2018 Aug; 157():9-20. PubMed ID: 29605647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of spent mushroom substrate applied to vineyard soil on the behaviour of copper-based fungicide residues.
    Herrero-Hernández E; Andrades MS; Rodríguez-Cruz MS; Sánchez-Martín MJ
    J Environ Manage; 2011 Jul; 92(7):1849-57. PubMed ID: 21458912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of copper concentration on methane emission from rice soils.
    Jiao Y; Huang Y; Zong L; Zheng X; Sass RL
    Chemosphere; 2005 Jan; 58(2):185-93. PubMed ID: 15571750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of different green manures on soil biological properties and maize yield.
    Tejada M; Gonzalez JL; García-Martínez AM; Parrado J
    Bioresour Technol; 2008 Apr; 99(6):1758-67. PubMed ID: 17512725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria.
    Andreazza R; Okeke BC; Lambais MR; Bortolon L; de Melo GW; Camargo FA
    Chemosphere; 2010 Nov; 81(9):1149-54. PubMed ID: 20937516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.
    Kalis EJ; Temminghoff EJ; Town RM; Unsworth ER; van Riemsdijk WH
    J Environ Qual; 2008; 37(6):2221-31. PubMed ID: 18948475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming.
    Cunha KP; do Nascimento CW; Pimentel RM; Ferreira CP
    J Hazard Mater; 2008 Dec; 160(1):228-34. PubMed ID: 18417284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil.
    Abbas MH; Abdelhafez AA
    Chemosphere; 2013 Jan; 90(2):588-94. PubMed ID: 22990024
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of long term organic amendments and vegetation of vineyard soils on the microscale distribution and biogeochemistry of copper.
    Navel A; Martins JM
    Sci Total Environ; 2014 Jan; 466-467():681-9. PubMed ID: 23959219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.
    Tanyolaç D; Ekmekçi Y; Unalan S
    Chemosphere; 2007 Feb; 67(1):89-98. PubMed ID: 17109927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions.
    Wang M; Cui Z; Xue M; Peng Q; Zhou F; Wang D; Dinh QT; Liu Y; Liang D
    Sci Total Environ; 2019 Nov; 689():1-9. PubMed ID: 31260894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationship between the extractable metals from soils and metals taken up by maize roots and shoots.
    Wang WS; Shan XQ; Wen B; Zhang SZ
    Chemosphere; 2003 Nov; 53(5):523-30. PubMed ID: 12948536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.