These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16481205)

  • 41. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure.
    Al-Khatib RM; Rashid NA; Abdullah R
    J Biomol Struct Dyn; 2011 Aug; 29(1):1-26. PubMed ID: 21696223
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The telomerase RNA pseudoknot is critical for the stable assembly of a catalytically active ribonucleoprotein.
    Gilley D; Blackburn EH
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6621-5. PubMed ID: 10359761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA conformation in catalytically active human telomerase.
    Yeoman JA; Orte A; Ashbridge B; Klenerman D; Balasubramanian S
    J Am Chem Soc; 2010 Mar; 132(9):2852-3. PubMed ID: 20148555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects on telomerase activity of the 5'-terminal region of human telomerase RNA.
    Li X; Nishizuka H; Tsutsumi K; Imai Y; Kurihara Y; Uesugi S
    Nucleic Acids Symp Ser (Oxf); 2005; (49):313-4. PubMed ID: 17150759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-molecule fluorescence resonance energy transfer studies of the human telomerase RNA pseudoknot: temperature-/urea-dependent folding kinetics and thermodynamics.
    Holmstrom ED; Nesbitt DJ
    J Phys Chem B; 2014 Apr; 118(14):3853-63. PubMed ID: 24617561
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamics and stability of GCAA tetraloops with 2-aminopurine and purine substitutions.
    Sarzynska J; Kulinski T
    J Biomol Struct Dyn; 2005 Feb; 22(4):425-39. PubMed ID: 15588106
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeted 2'-O methylation at a nucleotide within the pseudoknot of telomerase RNA reduces telomerase activity in vivo.
    Huang C; Yu YT
    Mol Cell Biol; 2010 Sep; 30(18):4368-78. PubMed ID: 20647541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot.
    Gonzalez RL; Tinoco I
    J Mol Biol; 1999 Jun; 289(5):1267-82. PubMed ID: 10373367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability.
    Nixon PL; Giedroc DP
    Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New models of Tetrahymena telomerase RNA from experimentally derived constraints and modeling.
    Cole DI; Legassie JD; Bonifacio LN; Sekaran VG; Ding F; Dokholyan NV; Jarstfer MB
    J Am Chem Soc; 2012 Dec; 134(49):20070-80. PubMed ID: 23163801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots.
    Dirks RM; Pierce NA
    J Comput Chem; 2004 Jul; 25(10):1295-304. PubMed ID: 15139042
    [TBL] [Abstract][Full Text] [Related]  

  • 52. From knotted to nested RNA structures: a variety of computational methods for pseudoknot removal.
    Smit S; Rother K; Heringa J; Knight R
    RNA; 2008 Mar; 14(3):410-6. PubMed ID: 18230758
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis.
    Parks JW; Kappel K; Das R; Stone MD
    RNA; 2017 Feb; 23(2):175-188. PubMed ID: 28096444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop.
    Tanaka F; Kameda A; Yamamoto M; Ohuchi A
    Biochemistry; 2004 Jun; 43(22):7143-50. PubMed ID: 15170351
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of the 3'-hairpin of the TYMV pseudoknot: preformation in RNA folding.
    Kolk MH; van der Graaf M; Fransen CT; Wijmenga SS; Pleij CW; Heus HA; Hilbers CW
    EMBO J; 1998 Dec; 17(24):7498-504. PubMed ID: 9857204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of the stability and flexibility of RNA complexes containing bulge loops of different sizes.
    Macchion BN; Strömberg R; Nilsson L
    J Biomol Struct Dyn; 2008 Oct; 26(2):163-73. PubMed ID: 18597538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ion-RNA interactions in the RNA pseudoknot of a ribosomal frameshifting site: molecular modeling studies.
    Le SY; Chen JH; Pattabiraman N; Maizel JV
    J Biomol Struct Dyn; 1998 Aug; 16(1):1-11. PubMed ID: 9745889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure and sequence elements of the CR4/5 domain of medaka telomerase RNA important for telomerase function.
    Kim NK; Zhang Q; Feigon J
    Nucleic Acids Res; 2014 Mar; 42(5):3395-408. PubMed ID: 24335084
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA.
    Flinders J; Dieckmann T
    J Mol Biol; 2001 May; 308(4):665-79. PubMed ID: 11350168
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combinatorics of saturated secondary structures of RNA.
    Clote P
    J Comput Biol; 2006 Nov; 13(9):1640-57. PubMed ID: 17147486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.