BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 16481455)

  • 1. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones.
    Frear DL; Guan X; Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2018 Sep; 367():17-31. PubMed ID: 30015103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of tympanic-membrane orientation on acoustic ear-canal quantities: A finite-element analysis.
    Nørgaard KM; Motallebzadeh H; Puria S
    J Acoust Soc Am; 2024 Apr; 155(4):2769-2785. PubMed ID: 38662609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures that contribute to middle-ear admittance in chinchilla.
    Rosowski JJ; Ravicz ME; Songer JE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1287-311. PubMed ID: 16944166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of wide-band middle ear transmission in the Mongolian gerbil.
    Overstreet EH; Ruggero MA
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):261-70. PubMed ID: 11831800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chinchilla middle ear transmission matrix model and middle-ear flexibility.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2017 May; 141(5):3274. PubMed ID: 28599566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The path of a click stimulus from ear canal to umbo.
    Milazzo M; Fallah E; Carapezza M; Kumar NS; Lei JH; Olson ES
    Hear Res; 2017 Mar; 346():1-13. PubMed ID: 28087416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Step forward to light up the future: pressure-induced emission.
    Ma Z; Xiao G; Zou B
    Sci Bull (Beijing); 2023 Aug; 68(15):1588-1590. PubMed ID: 37455167
    [No Abstract]   [Full Text] [Related]  

  • 9. Stimulus-frequency otoacoustic emissions and middle-ear pressure gains in a finite-element mouse model.
    Motallebzadeh H; Puria S
    J Acoust Soc Am; 2022 Nov; 152(5):2769. PubMed ID: 36456266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Link between stimulus otoacoustic emissions fine structure peaks and standing wave resonances in a cochlear model.
    Wen H; Meaud J
    J Acoust Soc Am; 2022 Mar; 151(3):1875. PubMed ID: 35364913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted.
    Bowling T; Wen H; Meenderink SWF; Dong W; Meaud J
    Sci Rep; 2021 Jul; 11(1):13651. PubMed ID: 34211051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse middle-ear forward and reverse acoustics.
    Motallebzadeh H; Puria S
    J Acoust Soc Am; 2021 Apr; 149(4):2711. PubMed ID: 33940924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forward and Reverse Middle Ear Transmission in Gerbil with a Normal or Spontaneously Healed Tympanic Membrane.
    Lin X; Meenderink SWF; Stomackin G; Jung TT; Martin GK; Dong W
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):261-274. PubMed ID: 33591494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear cochlear mechanics without direct vibration-amplification feedback.
    Altoè A; Shera CA
    Phys Rev Res; 2020; 2(1):. PubMed ID: 33403361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery from tympanic membrane perforation: Effects on membrane thickness, auditory thresholds, and middle ear transmission.
    Cai L; Stomackin G; Perez NM; Lin X; Jung TT; Dong W
    Hear Res; 2019 Dec; 384():107813. PubMed ID: 31655347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing tectorial membrane viscoelasticity enhances spontaneous otoacoustic emissions and compromises the detection of low level sound.
    Bowling T; Lemons C; Meaud J
    Sci Rep; 2019 May; 9(1):7494. PubMed ID: 31097743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing hair cell's mechano-transduction using two-tone suppression measurements.
    Zhou W; Nam JH
    Sci Rep; 2019 Mar; 9(1):4626. PubMed ID: 30874606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tympanic membrane surface motions in forward and reverse middle ear transmissions.
    Cheng JT; Maftoon N; Guignard J; Ravicz ME; Rosowski J
    J Acoust Soc Am; 2019 Jan; 145(1):272. PubMed ID: 30710932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortion product otoacoustic emissions: Sensitive measures of tympanic -membrane perforation and healing processes in a gerbil model.
    Dong W; Stomackin G; Lin X; Martin GK; Jung TT
    Hear Res; 2019 Jul; 378():3-12. PubMed ID: 30709692
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.