These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 1648168)
1. In vivo overproduction of the pentafunctional arom polypeptide in Aspergillus nidulans affects metabolic flux in the quinate pathway. Lamb HK; Bagshaw CR; Hawkins AR Mol Gen Genet; 1991 Jun; 227(2):187-96. PubMed ID: 1648168 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the 3-dehydroquinase domain of the pentafunctional AROM protein, and the quinate dehydrogenase from Aspergillus nidulans, and the overproduction of the type II 3-dehydroquinase from neurospora crassa. Hawkins AR; Moore JD; Adeokun AM Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):451-7. PubMed ID: 8257437 [TBL] [Abstract][Full Text] [Related]
3. Overproduction in Escherichia coli of the dehydroquinate synthase domain of the Aspergillus nidulans pentafunctional AROM protein. van den Hombergh JP; Moore JD; Charles IG; Hawkins AR Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):861-7. PubMed ID: 1320381 [TBL] [Abstract][Full Text] [Related]
4. Overproduction of, and interaction within, bifunctional domains from the amino- and carboxy-termini of the pentafunctional AROM protein of Aspergillus nidulans. Moore JD; Hawkins AR Mol Gen Genet; 1993 Jul; 240(1):92-102. PubMed ID: 8393515 [TBL] [Abstract][Full Text] [Related]
5. Inducible overproduction of the Aspergillus nidulans pentafunctional AROM protein and the type-I and -II 3-dehydroquinases from Salmonella typhi and Mycobacterium tuberculosis. Moore JD; Lamb HK; Garbe T; Servos S; Dougan G; Charles IG; Hawkins AR Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):173-81. PubMed ID: 1329726 [TBL] [Abstract][Full Text] [Related]
6. Control of metabolic flux through the quinate pathway in Aspergillus nidulans. Wheeler KA; Lamb HK; Hawkins AR Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):195-205. PubMed ID: 8670107 [TBL] [Abstract][Full Text] [Related]
7. Differential flux through the quinate and shikimate pathways. Implications for the channelling hypothesis. Lamb HK; van den Hombergh JP; Newton GH; Moore JD; Roberts CF; Hawkins AR Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):181-7. PubMed ID: 1318019 [TBL] [Abstract][Full Text] [Related]
8. The molecular biology of the pentafunctional AROM protein. Hawkins AR; Moore JD; Lamb HK Biochem Soc Trans; 1993 Feb; 21(1):181-6. PubMed ID: 8383607 [No Abstract] [Full Text] [Related]
9. Comparative analysis of the QUTR transcription repressor protein and the three C-terminal domains of the pentafunctional AROM enzyme. Lamb HK; Moore JD; Lakey JH; Levett LJ; Wheeler KA; Lago H; Coggins JR; Hawkins AR Biochem J; 1996 Feb; 313 ( Pt 3)(Pt 3):941-50. PubMed ID: 8611179 [TBL] [Abstract][Full Text] [Related]
10. Domain structure and interaction within the pentafunctional arom polypeptide. Hawkins AR; Smith M Eur J Biochem; 1991 Mar; 196(3):717-24. PubMed ID: 1849480 [TBL] [Abstract][Full Text] [Related]
11. The pre-chorismate (shikimate) and quinate pathways in filamentous fungi: theoretical and practical aspects. Hawkins AR; Lamb HK; Moore JD; Charles IG; Roberts CF J Gen Microbiol; 1993 Dec; 139(12):2891-9. PubMed ID: 8126417 [No Abstract] [Full Text] [Related]
12. Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions. Lakshman DK; Liu C; Mishra PK; Tavantzis S Curr Genet; 2006 Mar; 49(3):166-77. PubMed ID: 16479402 [TBL] [Abstract][Full Text] [Related]
13. Over-expression of the yeast multifunctional arom protein. Graham LD; Gillies FM; Coggins JR Biochim Biophys Acta; 1993 Dec; 1216(3):417-24. PubMed ID: 8268222 [TBL] [Abstract][Full Text] [Related]
14. Overproduction by gene amplification of the multifunctional arom protein confers glyphosate tolerance to a plastid-free mutant of Euglena gracilis. Reinbothe S; Ortel B; Parthier B Mol Gen Genet; 1993 Jun; 239(3):416-24. PubMed ID: 8391114 [TBL] [Abstract][Full Text] [Related]
15. Domain structure and function within the QUTA protein of Aspergillus nidulans: implications for the control of transcription. Levesley I; Newton GH; Lamb HK; van Schothorst E; Dalgleish RWM; Samson ACR; Roberts CF; Hawkins AR Microbiology (Reading); 1996 Jan; 142 ( Pt 1)():87-98. PubMed ID: 8581174 [TBL] [Abstract][Full Text] [Related]
16. The pentafunctional arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional domains. Duncan K; Edwards RM; Coggins JR Biochem J; 1987 Sep; 246(2):375-86. PubMed ID: 2825635 [TBL] [Abstract][Full Text] [Related]
17. Genetical and biochemical aspects of quinate breakdown in the filamentous fungus Aspergillus nidulans. Hawkins AR; Giles NH; Kinghorn JR Biochem Genet; 1982 Apr; 20(3-4):271-86. PubMed ID: 7049157 [TBL] [Abstract][Full Text] [Related]
18. Efficient independent activity of a monomeric, monofunctional dehydroquinate synthase derived from the N-terminus of the pentafunctional AROM protein of Aspergillus nidulans. Moore JD; Coggins JR; Virden R; Hawkins AR Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):297-304. PubMed ID: 8037684 [TBL] [Abstract][Full Text] [Related]
19. The complex Arom locus of Aspergillus nidulans. Evidence for multiple gene fusions and convergent evolution. Hawkins AR Curr Genet; 1987; 11(6-7):491-8. PubMed ID: 2836080 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Richards TA; Dacks JB; Campbell SA; Blanchard JL; Foster PG; McLeod R; Roberts CW Eukaryot Cell; 2006 Sep; 5(9):1517-31. PubMed ID: 16963634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]