BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16481695)

  • 1. A study on the computerized fractal analysis of architectural distortion in screening mammograms.
    Tourassi GD; Delong DM; Floyd CE
    Phys Med Biol; 2006 Mar; 51(5):1299-312. PubMed ID: 16481695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer-aided detection of the architectural distortion in digital mammograms using the fractal dimension measurements of BEMD.
    Zyout I; Togneri R
    Comput Med Imaging Graph; 2018 Dec; 70():173-184. PubMed ID: 29691123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms.
    Guo Q; Shao J; Ruiz VF
    Int J Comput Assist Radiol Surg; 2009 Jan; 4(1):11-25. PubMed ID: 20033598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach for the detection of architectural distortions using textural analysis of surrounding tissue.
    Zyout I; Togneri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3965-3968. PubMed ID: 28269153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-aided detection of architectural distortion in prior mammograms of interval cancer.
    Rangayyan RM; Banik S; Desautels JE
    J Digit Imaging; 2010 Oct; 23(5):611-31. PubMed ID: 20127270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of architectural distortion in prior mammograms of interval-cancer cases with neural networks.
    Banik S; Rangayyan RM; Desautels JE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6667-70. PubMed ID: 19964909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of architectural distortion in prior mammograms.
    Banik S; Rangayyan RM; Desautels JE
    IEEE Trans Med Imaging; 2011 Feb; 30(2):279-94. PubMed ID: 20851789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Architectural Distortion in Mammograms Based on Texture Analysis Using Support Vector Machine Classifier with Clinical Evaluation.
    Kamra A; Jain VK; Singh S; Mittal S
    J Digit Imaging; 2016 Feb; 29(1):104-14. PubMed ID: 26138756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted detection of mammographic masses: a template matching scheme based on mutual information.
    Tourassi GD; Vargas-Voracek R; Catarious DM; Floyd CE
    Med Phys; 2003 Aug; 30(8):2123-30. PubMed ID: 12945977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractal analysis of mammographic parenchymal patterns in breast cancer risk assessment.
    Li H; Giger ML; Olopade OI; Lan L
    Acad Radiol; 2007 May; 14(5):513-21. PubMed ID: 17434064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measures of angular spread and entropy for the detection of architectural distortion in prior mammograms.
    Banik S; Rangayyan RM; Desautels JE
    Int J Comput Assist Radiol Surg; 2013 Jan; 8(1):121-34. PubMed ID: 22460365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of fractal analysis to mammography.
    Raguso G; Ancona A; Chieppa L; L'abbate S; Pepe ML; Mangieri F; De Palo M; Rangayyan RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3182-5. PubMed ID: 21096599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computerized analysis of mammographic parenchymal patterns for assessing breast cancer risk: effect of ROI size and location.
    Li H; Giger ML; Huo Z; Olopade OI; Lan L; Weber BL; Bonta I
    Med Phys; 2004 Mar; 31(3):549-55. PubMed ID: 15070253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computerized analysis of multiple-mammographic views: potential usefulness of special view mammograms in computer-aided diagnosis.
    Huo Z; Giger ML; Vyborny CJ
    IEEE Trans Med Imaging; 2001 Dec; 20(12):1285-92. PubMed ID: 11811828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammographic texture and risk of breast cancer by tumor type and estrogen receptor status.
    Malkov S; Shepherd JA; Scott CG; Tamimi RM; Ma L; Bertrand KA; Couch F; Jensen MR; Mahmoudzadeh AP; Fan B; Norman A; Brandt KR; Pankratz VS; Vachon CM; Kerlikowske K
    Breast Cancer Res; 2016 Dec; 18(1):122. PubMed ID: 27923387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical mode decomposition of digital mammograms for the statistical based characterization of architectural distortion.
    Zyout I; Togneri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():109-12. PubMed ID: 26736212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing Architectural Distortion in Mammograms by Linear Saliency.
    Narváez F; Alvarez J; Garcia-Arteaga JD; Tarquino J; Romero E
    J Med Syst; 2017 Feb; 41(2):26. PubMed ID: 28005248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of architectural distortion in prior mammograms via analysis of oriented patterns.
    Rangayyan RM; Banik S; Desautels JE
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractal analysis of visual search activity for mass detection during mammographic screening.
    Alamudun F; Yoon HJ; Hudson KB; Morin-Ducote G; Hammond T; Tourassi GD
    Med Phys; 2017 Mar; 44(3):832-846. PubMed ID: 28079249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: application for mammography.
    Bliznakova K; Suryanarayanan S; Karellas A; Pallikarakis N
    Med Phys; 2010 Nov; 37(11):5604-17. PubMed ID: 21158272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.