These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16481699)

  • 1. Magnetogastrographic detection of gastric electrical response activity in humans.
    Irimia A; Richards WO; Bradshaw LA
    Phys Med Biol; 2006 Mar; 51(5):1347-60. PubMed ID: 16481699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependent component analysis for the magnetogastrographic detection of human electrical response activity.
    Estombelo-Montesco CA; de Araujo DB; Silva Filho AC; Moraes ER; Barros AK; Wakai RT; Baffa O
    Physiol Meas; 2007 Sep; 28(9):1029-44. PubMed ID: 17827651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artifact reduction in magnetogastrography using fast independent component analysis.
    Irimia A; Bradshaw LA
    Physiol Meas; 2005 Dec; 26(6):1059-73. PubMed ID: 16311453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Every slow-wave impulse is associated with motor activity of the human stomach.
    Hocke M; Schöne U; Richert H; Görnert P; Keller J; Layer P; Stallmach A
    Am J Physiol Gastrointest Liver Physiol; 2009 Apr; 296(4):G709-16. PubMed ID: 19095766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of gastric electrical control activity from simultaneous MGG/EGG recordings using independent component analysis.
    Irimia A; Gallucci MR; Richards WO; Bradshaw LA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3110-3. PubMed ID: 17946157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans.
    Prats-Boluda G; Garcia-Casado J; Martinez-de-Juan JL; Ponce JL
    Physiol Meas; 2007 Sep; 28(9):1115-33. PubMed ID: 17827658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation of small intestinal electrical control activity.
    Sarna SK; Daniel EE
    Gastroenterology; 1975 Sep; 69(3):660-7. PubMed ID: 1158084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spatio-temporal dipole simulation of gastrointestinal magnetic fields.
    Bradshaw LA; Myers A; Wikswo JP; Richards WO
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):836-47. PubMed ID: 12848351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of gastric slow waves and effects of feeding in pre-term and full-term infants.
    Zhang J; Ouyang H; Zhu HB; Zhu H; Lin X; Co E; Hayes J; Chen JD
    Neurogastroenterol Motil; 2006 Apr; 18(4):284-91. PubMed ID: 16553583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system.
    Lammers WJ; Ver Donck L; Stephen B; Smets D; Schuurkes JA
    Am J Physiol Gastrointest Liver Physiol; 2009 Jun; 296(6):G1200-10. PubMed ID: 19359425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive electrocologram: non-invasive recording of the human colonic electrical activity.
    Penchev P; Noeva A; Zlatarsky G; Kadiyan H; Kolev V; Toushev R; Atanassova E
    Acta Physiol Pharmacol Bulg; 1996; 22(3-4):83-8. PubMed ID: 9715286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of the dynamics of external factors influencing canine gastric electrical activity before and after uncoupling.
    Newton Price C; Mintchev MP
    J Med Eng Technol; 2002; 26(6):239-46. PubMed ID: 12490029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrogastrography in neonates.
    Lange A; Huang L; Funch-Jensen P
    Neurogastroenterol Motil; 2005 Aug; 17(4):512-7. PubMed ID: 16078939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interstitial cells of Cajal and electrical activity of smooth muscle in porcine ileum.
    Hudson NP; Mayhew IG; Pearson GT
    Acta Physiol (Oxf); 2006 Jul; 187(3):391-7. PubMed ID: 16776664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cutaneous gastric electrical stimulation alters gastric motility in dogs: New option for gastric electrical stimulation?
    Yin J; Ouyang H; Wang Z; Chen JD
    J Gastroenterol Hepatol; 2009 Jan; 24(1):149-54. PubMed ID: 18823433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autocorrelation, cross correlation and coherence analyses of the electrical activity of the human stomach in the postoperative period.
    Aldrete JS; Shepard RB; Jimenez H
    Surg Gynecol Obstet; 1982 Mar; 154(3):359-65. PubMed ID: 7064071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling?
    Buist ML; Cheng LK; Sanders KM; Pullan AJ
    Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects--a correlation study.
    Somarajan S; Muszynski ND; Obioha C; Richards WO; Bradshaw LA
    Physiol Meas; 2012 Jul; 33(7):1171-9. PubMed ID: 22735166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian patterns of gastric electrical and mechanical activity in dogs.
    Aviv R; Policker S; Brody F; Bitton O; Haddad W; Kliger A; Sanmiguel CP; Soffer EE
    Neurogastroenterol Motil; 2008 Jan; 20(1):63-8. PubMed ID: 17931337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.