These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 164822)
1. Production of hydrogen cyanide by Pseudomonas fluorescens. Freeman LR; Angelini P; Silverman GJ; Merritt C Appl Microbiol; 1975 Apr; 29(4):560-1. PubMed ID: 164822 [TBL] [Abstract][Full Text] [Related]
2. High-resolution gas chromatographic profiles of volatile organic compounds produced by microorganisms at refrigerated temperatures. Lee ML; Smith DL; Freeman LR Appl Environ Microbiol; 1979 Jan; 37(1):85-90. PubMed ID: 104660 [TBL] [Abstract][Full Text] [Related]
3. Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. Harris R; Knowles CJ J Gen Microbiol; 1983 Apr; 129(4):1005-11. PubMed ID: 6310025 [TBL] [Abstract][Full Text] [Related]
4. Volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas putrefaciens, Pseudomonas fluorescens, and an Achromobacter species. Miller A; Scanlan RA; Lee JS; Libbey LM Appl Microbiol; 1973 Jul; 26(1):18-21. PubMed ID: 4199335 [TBL] [Abstract][Full Text] [Related]
5. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Nagarajkumar M; Bhaskaran R; Velazhahan R Microbiol Res; 2004; 159(1):73-81. PubMed ID: 15160609 [TBL] [Abstract][Full Text] [Related]
6. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat. Mellor GE; Bentley JA; Dykes GA Food Microbiol; 2011 Aug; 28(5):1101-4. PubMed ID: 21569958 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Wang GY; Wang HH; Han YW; Xing T; Ye KP; Xu XL; Zhou GH Food Microbiol; 2017 May; 63():139-146. PubMed ID: 28040161 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium. Michelsen CF; Stougaard P Can J Microbiol; 2012 Apr; 58(4):381-90. PubMed ID: 22417387 [TBL] [Abstract][Full Text] [Related]
9. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Askeland RA; Morrison SM Appl Environ Microbiol; 1983 Jun; 45(6):1802-7. PubMed ID: 6410989 [TBL] [Abstract][Full Text] [Related]
10. Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. Ramette A; Moënne-Loccoz Y; Défago G FEMS Microbiol Ecol; 2006 Mar; 55(3):369-81. PubMed ID: 16466376 [TBL] [Abstract][Full Text] [Related]
11. Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Blumer C; Haas D Microbiology (Reading); 2000 Oct; 146 ( Pt 10)():2417-2424. PubMed ID: 11021918 [TBL] [Abstract][Full Text] [Related]
12. Inhibition enzyme-linked immunosorbent assay for detection of Pseudomonas fluorescens on meat surfaces. Eriksson PV; di Paola GN; Pasetti MF; Manghi MA Appl Environ Microbiol; 1995 Jan; 61(1):397-8. PubMed ID: 7887624 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a real-time TaqMan assay for the detection and enumeration of Pseudomonas fluorescens ATCC 13525 used as a challenge organism in testing of food equipments. Saha R; Bestervelt LL; Donofrio RS J Food Sci; 2012 Feb; 77(2):M150-5. PubMed ID: 22250861 [TBL] [Abstract][Full Text] [Related]
14. A selective medium for the rapid isolation of pseudomonads associated with poultry meat spoilage. Mead GC; Adams BW Br Poult Sci; 1977 Nov; 18(6):661-70. PubMed ID: 413611 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. Jalili F; Khavazi K; Pazira E; Nejati A; Rahmani HA; Sadaghiani HR; Miransari M J Plant Physiol; 2009 Apr; 166(6):667-74. PubMed ID: 18829132 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of production of some antifungal metabolites by fluorescent pseudomonads in vitro and their inhibitory effect on Penicillium digitatum in semi-commercial condition. Zamani M; Sharifi Tehrani A; Ahmadzadeh M; Ali Abadi AA Commun Agric Appl Biol Sci; 2007; 72(4):935-9. PubMed ID: 18396831 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a new isolate of Pseudomonas fluorescens strain Psd as a potential biocontrol agent. Upadhyay A; Srivastava S Lett Appl Microbiol; 2008 Aug; 47(2):98-105. PubMed ID: 18565138 [TBL] [Abstract][Full Text] [Related]
19. Optical characterization of Pseudomonas fluorescens on meat surfaces using time-resolved fluorescence. Bouchard A; Fréchette J; Vernon M; Cormier JF; Beaulieu R; Vallée R; Mafu AA J Biomed Opt; 2006; 11(1):014011. PubMed ID: 16526888 [TBL] [Abstract][Full Text] [Related]
20. Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. Devi KK; Kothamasi D FEMS Microbiol Lett; 2009 Nov; 300(2):195-200. PubMed ID: 19769587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]